Document Type : Original Article


1 Department of Pharmaceutical Microbiology, Ahmadu Bello University, Zaria, Nigeria

2 Department of Pharmaceutics and Industrial Pharmacy, Ahmadu Bello University, Zaria, Nigeria


Background and aims: The spread of antimicrobial resistance (AMR) is a serious public health threat complicating treatment and resulting in prolonged hospitalization. The prevalence of AMR threat is not well defined due to the dearth of appropriate surveillance systems. This study sought to assess the prevalence of AMR among bacterial isolates from sputum specimens obtained from patients with pneumonia presenting at two secondary healthcare facilities in Zaria from June 1 to August 31, 2018.
Methods: Standard methodology was followed in processing sputum samples that met the acceptance criteria. The antibiotic susceptibility patterns of bacterial pathogens cultured from sputum specimens obtained from June 1 to August 31, 2018) were evaluated using the recommendation of the Clinical and Laboratory Standards Institute. Finally, data were analyzed using descriptive statistics.
Results: Acinetobacter spp. were the predominant pathogens accounting for 32% of recovered isolates, followed by Staphylococcus spp. (18%) and Klebsiella spp. (17%), respectively. AMR was found in 91% of the isolates. Most isolates were resistant to erythromycin (ERY) (80%) and amoxicillin (83.3%). Eventually, the multiple antibiotic resistance index ≥0.3 was observed in 76% of the isolates.
Conclusion: Based on the findings, AMR rates were observed to be high, and may display a serious therapeutic challenge to the management of community-acquired pneumonia. Concerted efforts are needed to combat the worrisome AMR trends revealed in this study.


Main Subjects

1. UNICEF. Nigeria Contributes Highest Number to Global Pneumonia Child Deaths. UNICEF; 2019. https://www.unicef. org/nigeria/press-releases/nigeria-contributes-highest-number-global-pneumonia-child-deaths. Accessed December 12, 2019. 
2. WHO Pneumonia fact sheet. World Health Organisation 2016. Accessed May 1, 2018. 
3. Rudan I, O’Brien KL, Nair H, Liu L, Theodoratou E, Qazi S, et al. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health. 2013;3(1):010401. doi: 10.7189/ jogh.03.010401. 
4. Zar HJ, Madhi SA, Aston SJ, Gordon SB. Pneumonia in low and middle income countries: progress and challenges. Thorax. 2013;68(11):1052-6. doi: 10.1136/thoraxjnl-2013-204247. 
5. Izadnegahdar R, Cohen AL, Klugman KP, Qazi SA. Childhood pneumonia in developing countries. Lancet Respir Med. 2013;1(7):574-84. doi: 10.1016/s2213-2600(13)70075-4. 
6. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385(9966):430-40. doi: 10.1016/s0140-6736(14)61698-6. 
7. Earle K, Williams S. Burden of pneumococcal disease in adults aged 65 years and older: an Australian perspective. Pneumonia (Nathan). 2016;8:9. doi: 10.1186/s41479-016-0008-8. 
8. Bhuiyan MU, Snelling TL, West R, Lang J, Rahman T, Borland ML, et al. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case-control study protocol. BMJ Open. 2018;8(3):e020646. doi: 10.1136/bmjopen-2017-020646. 
9. Mizgerd JP. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am J Respir Crit Care Med. 2012;186(9):824-9. doi: 10.1164/rccm.201206-1063PP. 
10. Metzger DW, Sun K. Immune dysfunction and bacterial coinfections following influenza. J Immunol. 2013;191(5):2047-52. doi: 10.4049/jimmunol.1301152. 
11. Lee KH, Gordon A, Foxman B. The role of respiratory viruses in the etiology of bacterial pneumonia: an ecological perspective. Evol Med Public Health. 2016;2016(1):95-109. doi: 10.1093/emph/eow007. 
12. Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30(1):277-319. doi: 10.1128/cmr.00010-16. 
13. Goyet S, Vlieghe E, Kumar V, Newell S, Moore CE, Bousfield R, et al. Etiologies and resistance profiles of bacterial community-acquired pneumonia in Cambodian and neighboring countries’ health care settings: a systematic review (1995 to 2012). PLoS One. 2014;9(3):e89637. doi: 10.1371/journal. pone.0089637. 
14. Narula S, Sharma P, Kumar N, Kumar N, Kumar M. An upsurge of gram negative bacteria in community acquired pneumonia: an alarming trend! J Emerg Med Forecast. 2018;1:1007. 
15. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. doi: 10.1179/2047773215y.0000000030. 
16. Queen MA, Myers AL, Hall M, Shah SS, Williams DJ, Auger KA, et al. Comparative effectiveness of empiric antibiotics for community-acquired pneumonia. Pediatrics. 2014;133(1):e23-9. doi: 10.1542/peds.2013-1773. 
17. Lee MS, Oh JY, Kang CI, Kim ES, Park S, Rhee CK, et al. Guideline for antibiotic use in adults with community-acquired pneumonia. Infect Chemother. 2018;50(2):160-98. doi: 10.3947/ic.2018.50.2.160. 
18. Self WH, Wunderink RG, Williams DJ, Zhu Y, Anderson EJ, Balk RA, et al. Staphylococcus aureus community-acquired pneumonia: prevalence, clinical characteristics, and outcomes. Clin Infect Dis. 2016;63(3):300-9. doi: 10.1093/ cid/ciw300. 
19. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146(3713):837-7. doi: 10.1038/146837a0. 
20. Datta N, Richmond MH. The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem J. 1966;98(1):204-9. doi: 10.1042/ bj0980204. 
21. Pitton JS. Mechanisms of bacterial resistance to antibiotics. In: Reviews of Physiology. Vol 65. Berlin, Heidelberg: Springer; 1972. p. 15-93. doi: 10.1007/3-540-05814-1_2. 
22. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11(6):315-7. doi: 10.1007/bf01641355. 
23. Bush K. Past and present perspectives on ß-lactamases. Antimicrob Agents Chemother. 2018;62(10):e01076-18. doi: 10.1128/aac.01076-18. 
24. Bush K, Bradford PA. ß-Lactams and ß-lactamase inhibitors: an overview. In: Silver LL, Bush K, eds. Antibiotics and Antibiotic Resistance. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2016. p. 23-44. 
25. Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC ß-lactamases. Front Mol Biosci. 2018;5:16. doi: 10.3389/fmolb.2018.00016. 
26. Sun S, Selmer M, Andersson DI. Resistance to ß-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One. 2014;9(5):e97202. doi: 10.1371/journal.pone.0097202. 
27. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12(1):35-48. doi: 10.1038/nrmicro3155. 
28. Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med. 2016;6(10):a025395. doi:10.1101/ cshperspect.a025395 
29. Zhang Y, Tatsuno I, Okada R, Hata N, Matsumoto M, Isaka M, et al. Predominant role of msr(D) over mef(A) in macrolide resistance in Streptococcus pyogenes. Microbiology (Reading). 2016;162(1):46-52. doi: 10.1099/mic.0.000206. 
30. Morar M, Pengelly K, Koteva K, Wright GD. Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemistry. 2012;51(8):1740-51. doi: 10.1021/bi201790u. 
31. Clinical & Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI Document M100-S28. Wayne, PA: CLSI; 2018 
32. Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165-70. doi: 10.1128/aem.46.1.165-170.1983. 
33. aul S, Bezbaruah RL, Roy MK, Ghosh AC. Multiple antibiotic resistance (MAR) index and its reversion in Pseudomonas aeruginosa. Lett Appl Microbiol. 1997;24(3):169-71. doi: 10.1046/j.1472-765x.1997.00364.x. 
34. Messinger AI, Kupfer O, Hurst A, Parker S. Management of pediatric community-acquired bacterial pneumonia. Pediatr Rev. 2017;38(9):394-409. doi: 10.1542/pir.2016-0183. 
35. Agweyu A, Lilford RJ, English M. Appropriateness of clinical severity classification of new WHO childhood pneumonia guidance: a multi-hospital, retrospective, cohort study. Lancet Glob Health. 2018;6(1):e74-e83. doi: 10.1016/s2214- 109x(17)30448-5. 
36. Okesola AO, Ige OM. Trends in bacterial pathogens of lower respiratory tract infections. Indian J Chest Dis Allied Sci. 2008;50(3):269-72. 
37. Akingbade OA, Ogiogwa JI, Okerentugba PO, Innocent-Adiele HC, Onoh CC, Nwanze JC, et al. Prevalence and antibiotic susceptibility pattern of bacterial agents involved in lower respiratory tract infections in Abeokuta, Ogun State, Nigeria. Rep Opinion. 2012;4(5):25-30. 
38. Inghammar M, By Y, Farris C, Phe T, Borand L, Kerleguer A, et al. Serotype distribution of clinical Streptococcus pneumoniae isolates before the introduction of the 13-valent pneumococcal conjugate vaccine in Cambodia. Am J Trop Med Hyg. 2018;98(3):791-6. doi: 10.4269/ajtmh.17-0692. 
39. Farida H, Gasem MH, Suryanto A, Keuter M, Zulkarnain N, Satoto B, et al. Viruses and gram-negative bacilli dominate the etiology of community-acquired pneumonia in Indonesia, a cohort study. Int J Infect Dis. 2015;38:101-7. doi: 10.1016/j. ijid.2015.07.023. 
40. Akter S, Shamsuzzaman SM, Jahan F. Community acquired bacterial pneumonia: aetiology, laboratory detection and antibiotic susceptibility pattern. Malays J Pathol. 2014;36(2):97- 103. 
41. Cukic V, Hadzic A. The most common detected bacteria in sputum of patients with community acquired pneumonia (CAP) treated in hospital. Med Arch. 2016;70(5):354-8. doi: 10.5455/medarh.2016.70.354-358. 
42. Lagerström F, Bader M, Foldevi M, Fredlund H, Nordin- Olsson I, Holmberg H. Microbiological etiology in clinically diagnosed community-acquired pneumonia in primary care in Orebro, Sweden. Clin Microbiol Infect. 2003;9(7):645-52. doi: 10.1046/j.1469-0691.2003.00602.x. 
43. Llor C, Monedero MJ, García G, Arranz J, Cots JM, Bjerrum L. Interventions to improve adherence to first-line antibiotics in respiratory tract infections. The impact depends on the intensity of the intervention. Eur J Gen Pract. 2015;21(1):12-8. doi: 10.3109/13814788.2014.933205. 
44. El-Sokkary RH, Ramadan RA, El-Shabrawy M, El-Korashi LA, Elhawary A, Embarak S, et al. Community acquired pneumonia among adult patients at an Egyptian university hospital: bacterial etiology, susceptibility profile and evaluation of the response to initial empiric antibiotic therapy. Infect Drug Resist. 2018;11:2141-50. doi: 10.2147/idr.s182777. 
45. Rezai MS, Rafiei A, Ahangarkani F, Bagheri-Nesami M, Nikkhah A, Shafahi K, et al. Emergence of extensively drug resistant Acinetobacter baumannii-encoding integrons and extended-spectrum beta-lactamase genes isolated from ventilator-associated pneumonia patients. Jundishapur J Microbiol. 2017;10(7):e14377. doi: 10.5812/jjm.14377. 
46. Negash AA, Asrat D, Abebe W, Hailemariam T, Hailu T, Aseffa A, et al. Bacteremic community-acquired pneumonia in Ethiopian children: etiology, antibiotic resistance, risk factors, and clinical outcome. Open Forum Infect Dis. 2019;6(3):ofz029. doi: 10.1093/ofid/ofz029. 
47. Pham J, Asif T, Hamarshi MS. Community-acquired pneumonia with methicillin-resistant Staphylococcus aureus in a patient admitted to the intensive care unit: a therapeutic challenge. Cureus. 2018;10(1):e2019. doi: 10.7759/cureus.2019. 
48. Jitendranath A, Koshy S. Community acquired pneumonia due to gram negative bacilli and its antibiotic sensitivity pattern in a tertiary care centre. Int J Res Med Sci 2016;4(8):3121-4. doi: 10.18203/2320-6012.ijrms20162205. 
49. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(Suppl_1):S28-S36. doi: 10.1093/infdis/jiw282. 
50. Alexander EL, Loutit J, Tumbarello M, Wunderink R, Felton T, Daikos G, et al. Carbapenem-resistant Enterobacteriaceae infections: results from a retrospective series and implications for the design of prospective clinical trials. Open Forum Infect Dis. 2017;4(2):ofx063. doi: 10.1093/ofid/ofx063. 
51. AbdulAziz ZA, Ehinmidu JO, Adeshina GO, Pala YY, Yusuf SS, Bugaje MA. Plasmid mediated resistance in multidrug resistant bacteria isolated from children with suspected septicaemia in Zaria, Nigeria. Bayero J Pure Appl Sci. 2016;9(2):114-20. doi: 10.4314/bajopas.v9i2.22. 
52. Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol. 2018;9:2066. doi: 10.3389/fmicb.2018.02066. 
53. Evans BA, Amyes SG. OXA ß-lactamases. Clin Microbiol Rev. 2014;27(2):241-63. doi: 10.1128/cmr.00117-13. 
54. Mehrad B, Clark NM, Zhanel GG, Lynch JP 3rd. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest. 2015;147(5):1413-21. doi: 10.1378/ chest.14-2171. 
55. Haran JP, Volturo GA. Macrolide resistance in cases of community-acquired bacterial pneumonia in the emergency department. J Emerg Med. 2018;55(3):347-53. doi: 10.1016/j. jemermed.2018.04.031. 
56. Horie H, Ito I, Konishi S, Yamamoto Y, Yamamoto Y, Uchida T, et al. Isolation of ESBL-producing bacteria from sputum in community-acquired pneumonia or healthcare-associated pneumonia does not indicate the need for antibiotics with activity against this class. Intern Med. 2018;57(4):487-95. doi: 10.2169/internalmedicine.8867-17. 
57. Lv W, Zhang X, Hou M, Han D, Li Y, Xiong W. Draft genome sequence of an OXA-23, OXA-66, ADC-25 and TEM-1D co-producing Acinetobacter baumannii ST195 isolated from a patient with neonatal pneumonia in China. J Glob Antimicrob Resist. 2019;16:1-3. doi: 10.1016/j.jgar.2018.11.008.