Document Type : Original Article


Department of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria-Nigeria


Background and aims: Staphylococcus aureus, an important pathogen in bone diseases, is a highly multi-drug resistant (MDR) bacterium. This study aimed to investigate the antibiotic resistance among S. aureus isolated from patients on admission in an orthopaedic hospital.
Methods: In this cross-sectional research, 140 samples comprising urine samples, wound swabs, and nasal swabs were collected from 49 patients on admission. Samples were cultured and screened for S. aureus following standard procedures. Using the agar-disk diffusion method, the isolates were subjected to antibiotics susceptibility tests.
Results: S. aureus were isolated from 26 (18.6%) samples, and wound swabs were found to have the highest number of the S. aureus isolates with 12 (46.2%). Among the 26 S. aureus isolated, 25 (96.2%) isolates were resistant to at least four or more of the tested antibiotics. There were 23 (88.5%) MDR isolates, while there were only 2 (7.6%) extensively drug resistant ones. The number of methicillin-resistant S. aureus were 17 (65.4% of the isolates), while the number of methicillin-susceptible S. aureus were 9 (34.6% of the isolates). A total of 22 (84.6%) isolates had multi-antibiotic resistance (MAR) index greater than 0.2. Inducible clindamycin resistance of 2 (7.6%) was observed.
Conclusion: This study showed that the S. aureus isolated from the patients were resistant to multiple antibiotics. Regular surveillance of antibiotic resistance is of utmost importance, since it facilitates the design or development of the treatment regimens that could check the spread of antimicrobial resistance.


1. Asadi S, Jamali M. Assessment the frequency of Staphylococcus aureus golden methicillin-resistant (MRSA) and vancomycin-resistant VRSA in determining the MIC using E-test. Immunol Disord Immunother. 2017;2(1):104. doi: 10.35248/2593- 8509.17.2.112. 
2. Ashong CN, Raheem SA, Hunter AS, Mindru C, Barshes NR. Methicillin-resistant Staphylococcus aureus in foot osteomyelitis. Surg Infect (Larchmt). 2017;18(2):143-8. doi: 10.1089/sur.2016.165. 
3. Crowe B, Payne A, Evangelista PJ, Stachel A, Phillips MS, Slover JD, et al. Risk factors for infection following total knee arthroplasty: a series of 3836 cases from one institution. J Arthroplasty. 2015;30(12):2275-8. doi: 10.1016/j. arth.2015.06.058. 
4. Dusane DH, Kyrouac D, Petersen I, Bushrow L, Calhoun JH, Granger JF, et al. Targeting intracellular Staphylococcus aureus to lower recurrence of orthopaedic infection. J Orthop Res. 2018;36(4):1086-92. doi: 10.1002/jor.23723. 
5. Sheehy SH, Atkins BA, Bejon P, Byren I, Wyllie D, Athanasou NA, et al. The microbiology of chronic osteomyelitis: prevalence of resistance to common empirical anti-microbial regimens. J Infect. 2010;60(5):338-43. doi: 10.1016/j.jinf.2010.03.006. 
6. Ambrosch A, Haefner S, Jude E, Lobmann R. Diabetic foot infections: microbiological aspects, current and future antibiotic therapy focusing on methicillin-resistant Staphylococcus aureus. Int Wound J. 2011;8(6):567-77. doi: 10.1111/j.1742-481X.2011.00849.x. 
7. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269-81. 
8. Sabirova JS, Xavier BB, Hernalsteens JP, De Greve H, Ieven M, Goossens H, et al. Complete genome sequences of two prolific biofilm-forming Staphylococcus aureus isolates belonging to USA300 and EMRSA-15 clonal lineages. Genome Announc. 2014;2(3). doi: 10.1128/genomeA.00610-14. 
9. Kadariya J, Thapaliya D, Bhatta S, Mahatara RL, Bempah S, Dhakal N, et al. Multidrug-resistant Staphylococcus aureus colonization in healthy adults is more common in Bhutanese refugees in Nepal than those resettled in Ohio. Biomed Res Int. 2019;2019:5739247. doi: 10.1155/2019/5739247. 
10. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra- Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033. doi: 10.1038/ nrdp.2018.33. 
11. Dean MA, Olsen RJ, Long SW, Rosato AE, Musser JM. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione. Infect Immun. 2014;82(4):1600-5. doi: 10.1128/iai.01487-13. 
12. Kawamura H, Matsumoto K, Shigemi A, Orita M, Nakagawa A, Nozima S, et al. A bundle that includes active surveillance, contact precaution for carriers, and cefazolin-based antimicrobial prophylaxis prevents methicillin-resistant Staphylococcus aureus infections in clean orthopedic surgery. Am J Infect Control. 2016;44(2):210-4. doi: 10.1016/j. ajic.2015.09.014. 
13. Anderson DJ, Podgorny K, Berríos-Torres SI, Bratzler DW, Dellinger EP, Greene L, et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35 Suppl 2:S66-88. doi: 10.1017/ s0899823x00193869. 
14. Paul R, Pal L, Saha R, Shaw A, Kumar N. Prevalence of inducible clindamycin resistance and methicillin resistance among Staphylococcus species from various clinical samples in a tertiary care hospital of eastern India. Ann Int Med Dent Res. 2019;5(5):1. 
15. Ahmed MO, Abuzweda AR, Alghazali MH, Elramalli AK, Amri SG, Aghila E, et al. Misidentification of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Tripoli, Libya. Libyan J Med. 2010;5. doi: 10.3402/ljm.v5i0.5230. 
16. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100. CLSI; 2018. 
17. UK Standards for Microbiology Investigations. Inoculation of culture media for bacteriology. Available from: https://www. 
18. Tankeshwar A. Gram Staining: Principle, Procedure and Results. 
19. Aditi FY, Rahman SS, Hossain MM. A study on the microbiological status of mineral drinking water. Open Microbiol J. 2017;11:31- 44. doi: 10.2174/1874285801711010031. 
20. European Committee on Antimicrobial Susceptibility Testing. Breaking points tables for interpretation of MICs and zone diameters. Version 6.0. 2018. 
21. Yilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin resistance in staphylococci. J Med Microbiol. 2007;56(Pt 3):342-5. doi: 10.1099/jmm.0.46761-0. 
22. European Center for Disease Prevention and Control (ECDC), European Medicines Agency (EMA). ECDC/EMEA Joint Technical Report: The Bacterial Challenge: Time to React. Stockholm: ECDC, EMA; 2009. 
23. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x. 
24. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493-6.
25. Thenmozhi S, Rajeswari P, Kumar BS, Saipriyanga V, Kalpana M. Multi-drug resistant patterns of biofilm forming Aeromonas hydrophila from urine samples. Int J Pharm Sci Res. 2014;5(7):2908-18. doi: 10.13040/ ijpsr.0975-8232.5(7).2908-18. 
26. Dilnessa T, Bitew A. Prevalence and antimicrobial susceptibility pattern of methicillin resistant Staphylococcus aureus isolated from clinical samples at Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia. BMC Infect Dis. 2016;16:398. doi: 10.1186/s12879-016-1742-5. 
27. Ibrahim S, Adam AS, Aliero AA, Umar S. Prevalence and antibiotic sensitivity pattern of Staphylococcus aureus isolated from wound and otitis media among patients attending Aminu Kano Teaching Hospital, Kano, Nigeria. Microbiol Res J Int. 2018;25(2):1-9. doi: 10.9734/mrji/2018/44684. 
28. Thool VU, Bhoosreddy GL, Wadher BJ. Detection of resistance to linezolid in Staphylococcus aureus infecting orthopedic patients. Indian J Pathol Microbiol. 2012;55(3):361-4. doi: 10.4103/0377-4929.101745. 
29. Basak S, Singh P, Rajurkar M. Multidrug resistant and extensively drug resistant bacteria: a study. J Pathog. 2016;2016:4065603. doi: 10.1155/2016/4065603. 
30. Samie A, Shivambu N. Biofilm production and antibiotic susceptibility profiles of Staphylococcus aureus isolated from HIV and AIDS patients in the Limpopo province, South Africa. Afr J Biotechnol. 2011;10(65):14625-36. doi: 10.5897/ ajb11.1287. 
31. Siddiqui AH, Koirala J. Methicillin resistant Staphylococcus aureus (MRSA). In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2018. 
32. Nwankwo BO, Abdulhadi S, Magagi A, Ihesiulor G. Methicillin resistant S. aureus (MRSA) and their antibiotic sensitivity pattern in Kano, Nigeria. Afr J Clin Exp Microbiol. 2010;11(1): 29-33. doi: 10.4314/ajcem.v11i1.44088. 
33. Udobi CE, Obajuluwa AF, Onaolapo JA. Prevalence and antibiotic resistance pattern of methicillin-resistant Staphylococcus aureus from an orthopaedic hospital in Nigeria. Biomed Res Int. 2013;2013:860467. doi: 10.1155/2013/860467. 
34. Landersdorfer CB, Bulitta JB, Sörgel F. Pharmacokinetics and pharmacodynamics of antibiotics in bone. In: Zimmerli W, ed. Bone and Joint Infections: From Microbiology to Diagnostics and Treatment. Chichester: John Wiley & Sons Ltd; 2015. p.21- 37. 
35. Park SH, Kim JK, Park K. In vitro antimicrobial activities of fusidic acid and retapamulin against mupirocin- and methicillin-resistant Staphylococcus aureus. Ann Dermatol. 2015;27(5):551-6. doi: 10.5021/ad.2015.27.5.551.