Document Type : Original Article

Author

Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA/Department of Urban Public Health, Charles Drew University, Los Angeles, CA 90059, USA

Abstract

Background and aims: The nucleus accumbens (NAcc) functional and morphometric features may influence children’s body mass index (BMI). Recent evidence, however, suggests that the function and structure of the NAcc may have different predictive abilities for the BMI for the sub-groups of children from different racial and socioeconomic status (SES) backgrounds. Using the Adolescent Brain Cognitive Development data, this study investigated racial and SES differences in the association between NAcc microstructure (i.e., fractional anisotropy) and childhood BMI.
 
Methods: This cross-sectional study included 9497 children aged 9 and 10. Data were collected from 21 sites across 15 states in the United States. Then, the mixed-effects regression model was applied for data analysis. The predictor variable of interest was NAcc fractional anisotropy measured using diffusion magnetic resonance imaging (dMRI). The main outcome of interest was children’s BMI values, which were treated as a continuous variable. Covariates included gender, age, and family structure. Race (White, Black, Asian, and Other/mixed) and family income ( < USD 50,000, USD 50,000-100,000, and USD100,000+) were the effect modifiers (moderators).
 
Results: Higher average NAcc fractional anisotropy in dMRI was predictive of lower levels of the BMI, and net of covariates. However, this inverse association between the average intensity of the normalized T2-weighted image and the BMI was stronger in children from Hispanic, low income, and low-educated backgrounds compared to non-Hispanic, high-income, and high-educated backgrounds.
 
Conclusion: Our findings suggested that although NAcc fractional anisotropy is linked to children’s BMI, this link is not invariant across racial and SES groups. The issue of whether or not obesogenic environments alter the implications of NAcc for childhood BMI needs further investigation. For diverse groups, NAcc microstructures may have different magnitudes of associations with childhood BMI.

Keywords

1. Jones A. Race, socioeconomic status, and health during childhood: a longitudinal examination of racial/ethnic differences in parental socioeconomic timing and child obesity risk. Int J Environ Res Public Health. 2018;15(4):728. doi: 10.3390/ijerph15040728. 
2. Igel LI, Saunders KH, Fins JJ. Why weight? An analytic review of obesity management, diabetes prevention, and cardiovascular risk reduction. Curr Atheroscler Rep. 2018;20(8):39. doi: 10.1007/s11883-018-0740-z. 
3. Assari S, Thomas A, Caldwell CH, Mincy RB. Blacks’ diminished health return of family structure and socioeconomic status; 15 years of follow-up of a national urban sample of youth. J Urban Health. 2018;95(1):21-35. doi: 10.1007/s11524-017- 0217-3. 
4. Aitken TJ, Greenfield VY, Wassum KM. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues. J Neurochem. 2016;136(5):1026- 36. doi: 10.1111/jnc.13494. 
5. Durst M, Könczöl K, Balázsa T, Eyre MD, Tóth ZE. Reward-representing D1-type neurons in the medial shell of the accumbens nucleus regulate palatable food intake. Int J Obes (Lond). 2019;43(4):917-27. doi: 10.1038/s41366-018-0133-y. 
6. Azzout-Marniche D, Chalvon-Demersay T, Pimentel G, Chaumontet C, Nadkarni NA, Piedcoq J, et al. Obesity-prone high-fat-fed rats reduce caloric intake and adiposity and gain more fat-free mass when allowed to self-select protein from carbohydrate: fat intake. Am J Physiol Regul Integr Comp Physiol. 2016;310(11):R1169-76. doi: 10.1152/ ajpregu.00391.2015. 
7. Lowe CJ, Reichelt AC, Hall PA. The prefrontal cortex and obesity: a health neuroscience perspective. Trends Cogn Sci. 2019;23(4):349-61. doi: 10.1016/j.tics.2019.01.005. 
8. Sharkey RJ, Karama S, Dagher A. Overweight is not associated with cortical thickness alterations in children. Front Neurosci. 2015;9:24. doi: 10.3389/fnins.2015.00024. 
9. Marqués-Iturria I, Pueyo R, Garolera M, Segura B, Junqué C, García-García I, et al. Frontal cortical thinning and subcortical volume reductions in early adulthood obesity. Psychiatry Res. 2013;214(2):109-15. doi: 10.1016/j.pscychresns.2013.06.004. 
10. Vainik U, Baker TE, Dadar M, Zeighami Y, Michaud A, Zhang Y, et al. Neurobehavioral correlates of obesity are largely heritable. Proc Natl Acad Sci U S A. 2018;115(37):9312-7. doi: 10.1073/pnas.1718206115. 
11. Ronan L, Alexander-Bloch A, Fletcher PC. Childhood obesity, cortical structure, and executive function in healthy children. Cereb Cortex. 2020;30(4):2519-28. doi: 10.1093/cercor/ bhz257. 
12. van de Giessen E, la Fleur SE, Eggels L, de Bruin K, van den Brink W, Booij J. High fat/carbohydrate ratio but not total energy intake induces lower striatal dopamine D2/3 receptor availability in diet-induced obesity. Int J Obes (Lond). 2013;37(5):754-7. doi: 10.1038/ijo.2012.128. 
13. Silvah JH, Marchini JS, Mártires Lima CM, Ferreira Nicoletti C, Alexandre Santos L, Nobuyuki Itikawa E, et al. Regional cerebral blood flow at rest in obesity. Nutrition. 2020;79- 80:110888. doi: 10.1016/j.nut.2020.110888. 
14. van de Giessen E, de Bruin K, la Fleur SE, van den Brink W, Booij J. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/ D3 receptor availability in diet-induced obese rats. Eur Neuropsychopharmacol. 2012;22(4):290-9. doi: 10.1016/j. euroneuro.2011.07.015. 
15. Alcohol Research: Current Reviews Editorial Staff. NIH’s Adolescent Brain Cognitive Development (ABCD) study. Alcohol Res. 2018;39(1):97. 
16. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43-54. doi: 10.1016/j. dcn.2018.03.001. 
17. Garavan H, Bartsch H, Conway K, Decastro A, Goldstein RZ, Heeringa S, et al. Recruiting the ABCD sample: design considerations and procedures. Dev Cogn Neurosci. 2018;32:16-22. doi: 10.1016/j.dcn.2018.04.004. 
18. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43-54. doi: 10.1016/j. dcn.2018.03.001. 
19. Auchter AM, Hernandez Mejia M, Heyser CJ, Shilling PD, Jernigan TL, Brown SA, et al. A description of the ABCD organizational structure and communication framework. Dev Cogn Neurosci. 2018;32:8-15. doi: 10.1016/j. dcn.2018.04.003. 
20. Oterdoom DLM, van Dijk G, Verhagen MHP, Jiawan VCR, Drost G, Emous M, et al. Therapeutic potential of deep brain stimulation of the nucleus accumbens in morbid obesity. Neurosurg Focus. 2018;45(2):E10. doi: 10.3171/2018.4.focus18148. 
21. Lin LH, Pivorun EB. Analysis of serotonin, dopamine and their metabolites in the caudate putamen, the suprachiasmatic nucleus and the median raphe nucleus of euthermic and torpid deermice, Peromyscus maniculatus. Pharmacol Biochem Behav. 1989;33(2):309-14. doi: 10.1016/0091- 3057(89)90505-4. 
22. Cho SS, Yoon EJ, Kim SE. Asymmetry of dopamine D2/3 receptor availability in dorsal putamen and body mass index in non-obese healthy males. Exp Neurobiol. 2015;24(1):90-4. doi: 10.5607/en.2015.24.1.90. 
23. Haberny SL, Carr KD. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats. Neuroscience. 2005;132(4):1035-43. doi: 10.1016/j.neuroscience.2005.02.006. 
24. Pan Y, Siregar E, Carr KD. Striatal cell signaling in chronically food-restricted rats under basal conditions and in response to brief handling. Neurosci Lett. 2006;393(2-3):243-8. doi: 10.1016/j.neulet.2005.09.078.
25. Salamone JD, Mahan K, Rogers S. Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav. 1993;44(3):605-10. doi: 10.1016/0091-3057(93)90174-r. 
26. Meena H, Nakhate KT, Kokare DM, Subhedar NK. GABAA receptors in nucleus accumbens shell mediate the hyperphagia and weight gain following haloperidol treatment in rats. Life Sci. 2009;84(5-6):156-63. doi: 10.1016/j.lfs.2008.11.013. 
27. Kalyanasundar B, Perez CI, Luna A, Solorio J, Moreno MG, Elias D, et al. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell. J Neurophysiol. 2015;114(1):585-607. doi: 10.1152/ jn.00012.2015. 
28. Oginsky MF, Goforth PB, Nobile CW, Lopez-Santiago LF, Ferrario CR. Eating ‘junk-food’ produces rapid and long-lasting increases in NAc CP-AMPA receptors: implications for enhanced cue-induced motivation and food addiction. Neuropsychopharmacology. 2016;41(13):2977-86. doi: 10.1038/npp.2016.111. 
29. Waeiss RA, Knight CP, Engleman EA, Hauser SR, Rodd ZA. Co-administration of ethanol and nicotine heightens sensitivity to ethanol reward within the nucleus accumbens (NAc) shell and increasing NAc shell BDNF is sufficient to enhance ethanol reward in naïve Wistar rats. J Neurochem. 2020;152(5):556- 69. doi: 10.1111/jnc.14914. 
30. Oginsky MF, Maust JD, Corthell JT, Ferrario CR. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity. Psychopharmacology (Berl). 2016;233(5):773-84. doi: 10.1007/s00213-015-4157-x. 
31. Shalev U, Robarts P, Shaham Y, Morales M. Selective induction of c-Fos immunoreactivity in the prelimbic cortex during reinstatement of heroin seeking induced by acute food deprivation in rats. Behav Brain Res. 2003;145(1-2):79-88. doi: 10.1016/s0166-4328(03)00103-7. 
32. Sadeghzadeh F, Babapour V, Haghparast A. Role of dopamine D1-like receptor within the nucleus accumbens in acute food deprivation- and drug priming-induced reinstatement of morphine seeking in rats. Behav Brain Res. 2015;287:172-81. doi: 10.1016/j.bbr.2015.03.055. 
33. Shalev U, Finnie PS, Quinn T, Tobin S, Wahi P. A role for corticotropin-releasing factor, but not corticosterone, in acute food-deprivation-induced reinstatement of heroin seeking in rats. Psychopharmacology (Berl). 2006;187(3):376-84. doi: 10.1007/s00213-006-0427-y. 
34. D’Cunha TM, Daoud E, Rizzo D, Bishop AB, Russo M, Mourra G, et al. Augmentation of heroin seeking following chronic food restriction in the rat: differential role for dopamine transmission in the nucleus accumbens shell and core. Neuropsychopharmacology. 2017;42(5):1136-45. doi: 10.1038/npp.2016.250. 
35. Tobin S, Sedki F, Abbas Z, Shalev U. Antagonism of the dopamine D1-like receptor in mesocorticolimbic nuclei attenuates acute food deprivation-induced reinstatement of heroin seeking in rats. Eur J Neurosci. 2013;37(6):972-81. doi: 10.1111/ejn.12112.