Document Type : Review article


1 Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran

2 Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran / Department of Nursing, School of Nursing and Midwifery, Jahrom University of Medical Sciences, Jahrom, Iran


Background and aims: Today, with the outbreak of the coronavirus disease 19 (COVID-19) pandemic, we have witnessed many efforts by different countries to produce a vaccine for this disease. Each vaccine has been marketed with different efficiencies, thus this research was designed to determine the efficacy of different types of these vaccines in 2022.
Methods: The present research was a systematic review. Researchers surveyed six international databases, including Medline/PubMed, ProQuest, Scopus, EMBASE, Google Scholar, and the ISI Web of Science, in January 2022. After reviewing the titles and abstracts of articles, 60 articles entered the final stage, and their full texts were reviewed based on the study purpose. All the vaccines included in the study were approved by the World Health Organization (WHO) or the Ministry of Health of the manufacturer country in the third phase of the clinical trial.
Results: All current vaccination platforms provide adequate protection against severe acute respiratory syndrome coronavirus 2 (SARC-CoV-2) infection and significantly reduce the risk of serious infection. In addition, people who receive two vaccine doses have higher efficacy than those who only receive one dose of each vaccine. The results of the studies demonstrated that the effectiveness of vaccines is different in various groups and countries. According to the results of the reviewed studies, the Pfizer vaccine had an overall effect of 100% on the age group of 12-15 years. The overall effect of the Moderna vaccine varied from 78.6% to 97% in different groups. In general, the available vaccines for COVID-19 are less effective in the Omicron variant. On the other hand, it seems that the COVID-19 vaccines had better efficacy on the alpha variant.
Conclusion: Overall, the vaccines used in the COVID-19 pandemic have acceptable efficacy. Although serious side effects caused by the injection of the vaccine have been rarely reported in some studies, it seems that the safety of these vaccines is acceptable in general.


1. Noor R. Developmental status of the potential vaccines for the mitigation of the COVID-19 pandemic and a focus on the effectiveness of the Pfizer-BioNTech and Moderna mRNA vaccines. Curr Clin Microbiol Rep. 2021;8(3):178-85. doi: 10.1007/s40588-021-00162-y. 
2. Bazrafshan MR, Delam H. Economic crisis during the COVID-19 pandemic is likely to increase suicide risk. J Health Sci Surveill Syst. 2020;8(4):187-8. doi: 10.30476/ jhsss.2020.87416.1111. 
3. Bazrafshan MR, Delam H, Elahi M, Akbarpoor S, Faramarzian Z. Factors influencing anxiety of healthcare workers during the outbreak of 2019 novel coronavirus disease (COVID-19): a cross-sectional study. J Health Sci Surveill Syst. 2021;9(1):26- 31. doi: 10.30476/jhsss.2020.88006.1129. 
4. Sadeghifar J, Jalilian H, Momeni K, Delam H, Sheleme T, Rashidi A, et al. Outcome evaluation of COVID-19 infected patients by disease symptoms: a cross-sectional study in Ilam province, Iran. BMC Infect Dis. 2021;21(1):903. doi: 10.1186/ s12879-021-06613-7. 
5. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines. 2021;6(1):28. doi: 10.1038/s41541-021-00292-w. 
6. Korang SK, Juul S, Nielsen EE, Feinberg J, Siddiqui F, Ong G, et al. Vaccines to prevent COVID-19: a protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING VACCINE Project). Syst Rev. 2020;9(1):262. doi: 10.1186/s13643-020-01516-1. 
7. Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020;288:198114. doi: 10.1016/j. virusres.2020.198114. 
8. Cheng H, Peng Z, Luo W, Si S, Mo M, Zhou H, et al. Efficacy and safety of COVID-19 vaccines in phase III trials: a meta-analysis. Vaccines (Basel). 2021;9(6):582. doi: 10.3390/ vaccines9060582. 
9. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39- 51. doi: 10.1016/s1473-3099(20)30831-8. 
10. Moline HL, Whitaker M, Deng L, Rhodes JC, Milucky J, Pham H, et al. Effectiveness of COVID-19 vaccines in preventing hospitalization among adults aged ≥ 65 years - COVID-NET, 13 states, February-April 2021. MMWR Morb Mortal Wkly Rep. 2021;70(32):1088-93. doi: 10.15585/mmwr.mm7032e3. 
11. Liu X, Shaw RH, Stuart ASV, Greenland M, Aley PK, Andrews NJ, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com- COV): a single-blind, randomised, non-inferiority trial. Lancet. 2021;398(10303):856-69. doi: 10.1016/s0140- 6736(21)01694-9. 
12. Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. Eur Rev Med Pharmacol Sci. 2021;25(3):1663-9. doi: 10.26355/eurrev_202102_24877. 
13. Han X, Xu P, Ye Q. Analysis of COVID-19 vaccines: types, thoughts, and application. J Clin Lab Anal. 2021;35(9):e23937. doi: 10.1002/jcla.23937. 
14. Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med. 2021;27(2):205-11. doi: 10.1038/s41591-021-01230-y. 
15. Cattel L, Giordano S, Traina S, Lupia T, Corcione S, Angelone L, et al. Vaccine development and technology for SARS-CoV-2: current insight. J Med Virol. 2022;94(3):878-96. doi: 10.1002/jmv.27425. 
16. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261-79. doi: 10.1038/nrd.2017.243. 
17. van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19(8):810-2. doi: 10.1038/ s41563-020-0746-0. 
18. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77-81. doi: 10.1126/ science.abc1932. 
19. Yadav PD, Sapkal GN, Ella R, Sahay RR, Nyayanit DA, Patil DY, et al. Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. J Travel Med. 2021;28(7):taab104. doi: 10.1093/jtm/taab104. 
20. Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect. 2022;11(1):337-43. doi: 10.1080/22221751.2021.2022440. 
21. Hassanipour S, Delam H, Arab-Zozani M, Abdzadeh E, Hosseini SA, Nikbakht HA, et al. Survival rate of prostate cancer in Asian countries: a systematic review and meta-analysis. Ann Glob Health. 2020;86(1):2. doi: 10.5334/aogh.2607. 
22. Hassanipour S, Delam H, Nikbakht HA, Abdzadeh E, Salehiniya H, Arab-Zozani M, et al. The incidence of laryngeal cancer in Iran: a systematic review and meta-analysis. Clin Epidemiol Glob Health. 2019;7(3):457-63. doi: 10.1016/j. cegh.2019.02.003. 
23. Bajema KL, Dahl RM, Evener SL, Prill MM, Rodriguez- Barradas MC, Marconi VC, et al. Comparative effectiveness and antibody responses to Moderna and Pfizer-BioNTech COVID-19 vaccines among hospitalized veterans - five Veterans Affairs Medical Centers, United States, February 1-September 30, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(49):1700-5. doi: 10.15585/mmwr.mm7049a2. 
24. Vokó Z, Kiss Z, Surján G, Surján O, Barcza Z, Pályi B, et al. Nationwide effectiveness of five SARS-CoV-2 vaccines in Hungary-the HUN-VE study. Clin Microbiol Infect. 2022;28(3):398-404. doi: 10.1016/j.cmi.2021.11.011 . 
25. Frenck RW Jr, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart S, et al. Safety, immunogenicity, and efficacy of the BNT162b2 COVID-19 vaccine in adolescents. N Engl J Med. 2021;385(3):239-50. doi: 10.1056/NEJMoa2107456. 
26. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671- 81. doi: 10.1016/s0140-6736(21)00234-8. 
27. McKeigue PM, McAllister DA, Hutchinson SJ, Robertson C, Stockton D, Colhoun HM. Vaccine efficacy against severe COVID-19 in relation to delta variant (B.1.617.2) and time since second dose in patients in Scotland (REACT-SCOT): a case-control study. Lancet Respir Med. 2022;10(6):566-72. doi: 10.1016/s2213-2600(22)00045-5. 
28. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403-16. doi: 10.1056/ NEJMoa2035389. 
29. Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 2021;397(10282):1351-62. doi: 10.1016/s0140- 6736(21)00628-0. 
30. Swift MD, Breeher LE, Tande AJ, Tommaso CP, Hainy CM, Chu H, et al. Effectiveness of messenger RNA coronavirus disease 2019 (COVID-19) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a cohort of healthcare personnel. Clin Infect Dis. 2021;73(6):e1376-e9. doi: 10.1093/cid/ciab361. 
31. Pilishvili T, Gierke R, Fleming-Dutra KE, Farrar JL, Mohr NM, Talan DA, et al. Effectiveness of mRNA COVID-19 vaccine among U.S. health care personnel. N Engl J Med. 2021;385(25):e90. doi: 10.1056/NEJMoa2106599. 
32. Falsey AR, Sobieszczyk ME, Hirsch I, Sproule S, Robb ML, Corey L, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine. N Engl J Med. 2021;385(25):2348-60. doi: 10.1056/NEJMoa2105290. 
33. Self WH, Tenforde MW, Rhoads JP, Gaglani M, Ginde AA, Douin DJ, et al. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions - United States, March-August 2021. MMWR Morb Mortal Wkly Rep. 2021;70(38):1337-43. doi: 10.15585/mmwr.mm7038e1. 
34. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med. 2021;385(7):585- 94. doi: 10.1056/NEJMoa2108891. 
35. Paris C, Perrin S, Hamonic S, Bourget B, Roué C, Brassard O, et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. Clin Microbiol Infect. 2021;27(11):1699.e5-1699.e8. doi: 10.1016/j.cmi.2021.06.043. 
36. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603-15. doi: 10.1056/NEJMoa2034577. 
37. IHME. COVID-19 Vaccine Efficacy Summary. Available from: Updated February 18, 2022. 
38. Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med. 2021;27(9):1614- 21. doi: 10.1038/s41591-021-01446-y. 
39. Skowronski DM, Setayeshgar S, Zou M, Prystajecky N, Tyson JR, Galanis E, et al. Single-dose mRNA vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including alpha and gamma variants: a test-negative design in adults 70 years and older in British Columbia, Canada. Clin Infect Dis. 2022;74(7):1158-65. doi: 10.1093/cid/ciab616. 
40. Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nat Microbiol. 2022;7(3):379-85. doi: 10.1038/s41564-021-01053-0. 
41. Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med. 2021;385(19):1761-73. doi: 10.1056/NEJMoa2110345. 
42. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1885- 98. doi: 10.1056/NEJMoa2102214. 
43. Lefèvre B, Tondeur L, Madec Y, Grant R, Lina B, van der Werf S, et al. Beta SARS-CoV-2 variant and BNT162b2 vaccine effectiveness in long-term care facilities in France. Lancet Healthy Longev. 2021;2(11):e685-e7. doi: 10.1016/s2666- 7568(21)00230-0. 
44. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397(10287):1819-29. doi: 10.1016/s0140-6736(21)00947-8. 
45. Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. The Lancet. 2021;397(10286):1725-35. doi: 10.1016/ S0140-6736(21)00790-X. 
46. Charmet T, Schaeffer L, Grant R, Galmiche S, Chény O, Von Platen C, et al. Impact of original, B.1.1.7, and B.1.351/P.1 SARS-CoV-2 lineages on vaccine effectiveness of two doses of COVID-19 mRNA vaccines: results from a nationwide case-control study in France. Lancet Reg Health Eur. 2021;8:100171. doi: 10.1016/j.lanepe.2021.100171. 
47. Fowlkes A, Gaglani M, Groover K, Thiese MS, Tyner H, Ellingson K. Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection among frontline workers before and during B.1.617.2 (Delta) variant predominance - eight U.S. locations, December 2020-August 2021. MMWR Morb Mortal Wkly Rep. 2021;70(34):1167-9. doi: 10.15585/mmwr. mm7034e4. 
48. Tang P, Hasan MR, Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021;27(12):2136-43. doi: 10.1038/s41591-021-01583-4. 
49. Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS, et al. Effectiveness of mRNA-1273 against Delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. BMJ. 2021;375:e068848. doi: 10.1136/bmj-2021- 068848. 
50. Moreira ED Jr, Kitchin N, Xu X, Dychter SS, Lockhart S, Gurtman A, et al. Safety and efficacy of a third dose of BNT162b2 COVID-19 vaccine. N Engl J Med. 2022;386(20):1910-21. doi: 10.1056/NEJMoa2200674. 
51. Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, et al. Safety of the BNT162b2 mRNA COVID-19 vaccine in a nationwide setting. N Engl J Med. 2021;385(12):1078-90. doi: 10.1056/NEJMoa2110475. 
52. Ali K, Berman G, Zhou H, Deng W, Faughnan V, Coronado- Voges M, et al. Evaluation of mRNA-1273 SARS-CoV-2 vaccine in adolescents. N Engl J Med. 2021;385(24):2241-51. doi: 10.1056/NEJMoa2109522. 
53. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427-38. doi: 10.1056/NEJMoa2028436. 
54. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021;396(10267):1979-93. doi: 10.1016/s0140-6736(20)32466-1. 
55. Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;397(10277):881-91. doi: 10.1016/s0140-6736(21)00432-3. 
56. Babamahmoodi F, Saeedi M, Alizadeh-Navaei R, Hedayatizadeh-Omran A, Mousavi SA, Ovaise G, et al. Side effects and Immunogenicity following administration of the Sputnik V COVID-19 vaccine in health care workers in Iran. Sci Rep. 2021;11(1):21464. doi: 10.1038/s41598-021-00963-7. 
57. Pagotto V, Ferloni A, Mercedes Soriano M, Díaz M, Braguinsky Golde N, González MI, et al. Active monitoring of early safety of Sputnik V vaccine in Buenos Aires, Argentina. Medicina (B Aires). 2021;81(3):408-14. 
58. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. Lancet Infect Dis. 2022;22(2):196-208. doi: 10.1016/s1473-3099(21)00462-x. 
59. Kamidani S, Rostad CA, Anderson EJ. COVID-19 vaccine development: a pediatric perspective. Curr Opin Pediatr. 2021;33(1):144-51. doi: 10.1097/mop.0000000000000978. 
60. Kwetkat A, Heppner HJ. Comorbidities in the elderly and their possible influence on vaccine response. Interdiscip Top Gerontol Geriatr. 2020;43:73-85. doi: 10.1159/000504491. 
61. Mungmunpuntipantip R, Wiwanitkit V. Estimated change of COVID-19 vaccine efficacy due to omicron variant SARS CoV2. Int J Physiol Pathophysiol Pharmacol. 2022;14(2):134-7. 
62. Ren SY, Wang WB, Gao RD, Zhou AM. Omicron variant (B.1.1.529) of SARS-CoV-2: mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases. 2022;10(1):1-11. doi: 10.12998/wjcc.v10.i1.1.