Document Type : Original Article

Authors

1 Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Iran

2 Department of Veterinary Medicine Sciences, University of Bologna, Italy Graduate Student in Environmental Sciences

Abstract

Background and aims: Antioxidant defense plays a vital part in organism protection against oxidative stress which is produced by reactive oxygen species (ROS). Oxidative stress represents a serious threat to the animals facing with heavy metals. This study was designed to analyze the habitat suitability for Caspian pond turtles, namely, Mauremys caspica in Mazandaran province by measuring lead (Hg) and mercury (Pb) tissues concentrations and heavy metals’ effects on the health status of Caspian pond turtles through quantifying the oxidative stress factors.
Methods: Hg and Pb were measured in kidney and liver tissues of 20 sampled Caspian pond male turtles (treatment group) using atomic absorption spectrometry (AAS) and a Caspian pond male turtle was included in the control group. Moreover, glutathione (GSH) level, catalase (CAT), and superoxide dismutase (SOD) activities were investigated in kidney and liver tissues.
Results: The mean (SD) concentration of Pb and Hg were 35.83 (4.20), and 0.604 (0.03) mg/kg for the sampled livers and also 31.01 (3.42) mg/kg and 0.316 (0.04) mg/kg for the sampled kidneys, respectively. Levels of trace elements, CAT, and SOD activities were found to be higher in the liver. Totally, GSH levels, as well as, CAT, and SOD activities were found to be higher and lower, respectively, in the control turtle as compared with the contaminated Caspian pond turtles. Trace-element levels had a positive correlation with CAT and SOD activities while having a negative association with GSH levels in contaminated Caspian pond sampled turtles.
Conclusion: According to the results, it was inferred that high Hg and Pb concentrations in the turtles were due to the heavy metal contamination of their habitat in Mazandaran province. Based on the positive correlation between the heavy metal concentration of the tissue and dysfunction of oxidative stress defense markers, it can be concluded when the Caspian pond turtles are faced with heavy metal contamination risk, these markers can act as a bioindicator of their health status. No doubt, more studies are required to prove this hypothesis.

Keywords

Main Subjects

1.Blagojevic J, Jovanovic V, Stamenkovic G, Jojic V, BugarskiStanojevic V, Adnadevic T, et al. Age differences in bioaccumulation of heavy metals in populations of the black-striped field mouse, Apodemusagrarius (Rodentia, Mammalia). Int J Environ Res. 2012;6(4):1045-52. doi: 10.22059/ijer.2012.575.
2.Joseph B, George J, Jeevitha MV. Impact of heavy metals and Hsp response. Int J Biosci. 2012;2(9):51-64. 
3.Vinodhini R, Narayanan M. The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iranian J Environ Health Sci Eng. 2009;6(1):23-8. 
4.Houserova P, Kuban V, Spurny P, Habarta P. Determination of total mercury and mercury species in fish and aquatic ecosystems of Moravian rivers. Vet Med. 2006;51(3):101-10. doi: 10.17221/5527-VETMED. 
5.Drevnick PE, Sandheinrich MB. Effects of dietary methylmercury on reproductive endocrinology of fathead minnows. Environ Sci Technol. 2003;37(19):4390-6. 
6.Drevnick PE, Sandheinrich MB, Oris JT. Increased ovarian follicular apoptosis in fathead minnows (Pimephales promelas) exposed to dietary methylmercury. Aquat Toxicol. 2006;79(1):49-54. doi: 10.1016/j.aquatox.2006.05.007. 
7.Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. USA: Oxford University Press; 2015:896.
8.Hoffman DJ, Ohlendorf HM, Marn CM, Pendleton GW. Association of mercury and selenium with altered glutathione metabolism and oxidative stress in diving ducks from the San Francisco Bay region. Environ Toxicol Chem. 1998;17(2):167- 72. 
9.Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf. 2006;64(2):178-89. doi: 10.1016/j. ecoenv.2005.03.013. 
10.Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol. 2014;232:1-44. doi: 10.1007/978-3-319-06746-9_1. 
11.Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329- 54. doi: 10.1152/physrev.00040.2012. 
12.Cortes-Gomez AA, Morcillo P, Guardiola FA, Espinosa C, Esteban MA, Cuesta A, et al. Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations. 2018;233:156- 67. doi: 10.1016/j.envpol.2017.10.046. 
13.Kami HG, Hojati V, Rad SP, Sheidaee M. A biological study of the European pond turtle, Emys orbicularis persica, and the Caspian pond turtle, Mauremys caspica caspica, in the Golestan and Mazandaran provinces of Iran. Zool Middle East. 2006;37(1):21-8. doi: 10.1080/09397140.2006.10638145. 
14.Olsson MM, Healey M, Perrin C, Wilson MR, Tobler M. Sexspecific SOD levels and DNA damage in painted dragon lizards (Ctenophorus pictus). Oecologia. 2012;170(4):917-24. 
15.Kuo CH, Hook JB. Depletion of renal glutathione content and nephrotoxicity of cephaloridine in rabbits, rats, and mice. Toxicol Appl Pharmacol. 1982;63(2):292-302. 
16.Ranjbar A, Ghahremani MH, Sharifzadeh M, Golestani A, Ghazi-Khansari M, Baeeri M, et al. Protection by pentoxifylline of malathion-induced toxic stress and mitochondrial damage in rat brain. Hum Exp Toxicol. 2010;29(10):851-64. doi: 10.1177/0960327110363836. 
17.Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Hassani S, Pakzad M, Baeeri M, et al. Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes. 2011;2(11):204-10. doi: 10.4239/wjd.v2.i11.204. 
18.Parida P, Mohapatra N, Mohanta L. Effect of cold shock on lipid peroxidation and reduced glutation level of the kidney of hemidactylus flaviviridis Int J Sci Environ Technol. 2013;2(6):1232-7. 
19.Anan Y, Kunito T, Sakai H, Tanabe S. Subcellular distribution of trace elements in the liver of sea turtles. Mar Pollut Bull. 2002;45(1-12):224-9. 
20.Yadollahvand R, Kami HG, Mashroofeh A, Bakhtiari AR. Assessment trace elements concentrations in tissues in Caspian pond turtle (Mauremys caspica) from Golestan province, Iran. Ecotoxicol Environ Saf. 2014;101:191-5. doi: 10.1016/j. ecoenv.2013.12.028. 
21.Seem JE, Decious GM. Environmental control system and method. Google Patents; 1999. 
22.Storelli MM, Storelli A, D’Addabbo R, Marano C, Bruno R, Marcotrigiano GO. Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: overview and evaluation. Environ Pollut. 2005;135(1):163-70. doi: 10.1016/j.envpol.2004.09.005. 
23.Albers PH, Sileo L, Mulhern BM. Effects of environmental contaminants on snapping turtles of a tidal wetland. Arch Environ Contam Toxicol. 1986;15(1):39-49. doi: 10.1007/ bf01055247.
24.Overmann SR, Krajicek JJ. Snapping turtles (Chelydra serpentina) as biomonitors of lead contamination of the big river in missouri’s old lead belt. Environ Toxicol Chem. 1995;14(4):689-95. doi: doi:10.1002/etc.5620140417. 
25.Bishop BE, Savitzky BA, Abdel-Fattah T. Lead bioaccumulation in emydid turtles of an urban lake and its relationship to shell disease. Ecotoxicol Environ Saf. 2010;73(4):565-71. doi: 10.1016/j.ecoenv.2009.12.027. 
26.Yu S, Halbrook RS, Sparling DW, Colombo R. Metal accumulation and evaluation of effects in a freshwater turtle. Ecotoxicology. 2011;20(8):1801-12. doi: 10.1007/s10646- 011-0716-z. 
27.Rainbow PS. Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut. 2002;120(3):497-507. doi: 10.1016/S0269-7491(02)00238-5. 
28.Luoma SN, Rainbow PS. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol. 2005;39(7):1921-31. 
29.Das K, Chainy GB. Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta. 2001;1537(1):1-13. 
30.Amaral MJ, Sanchez-Hernandez JC, Bicho RC, Carretero MA, Valente R, Faustino AM, et al. Biomarkers of exposure and effect in a lacertid lizard (Podarcis bocagei Seoane) exposed to chlorpyrifos. Environ Toxicol Chem. 2012;31(10):2345-53. doi: 10.1002/etc.1955. 
31.Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol. 2000;59(1):95-104. 
32.Pinto E, Sigaud-kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P. Heavy metal–induced oxidative stress in algae 1. J Phycol. 2003;39(6):1008-18. doi: 10.1111/j.0022- 3646.2003.02-193.x. 
33.Isaksson C, Ornborg J, Stephensen E, Andersson S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. Ecohealth. 2005;2(2):138- 46. doi: 10.1007/s10393-005-3869-5. 
34.Berglund AM, Sturve J, Forlin L, Nyholm NE. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden. Environ Res. 2007;105(3):330-9. doi: 10.1016/j.envres.2007.06.002. 
35.Koivula MJ, Kanerva M, Salminen JP, Nikinmaa M, Eeva T. Metal pollution indirectly increases oxidative stress in great tit (Parus major) nestlings. Environ Res. 2011;111(3):362-70. doi: 10.1016/j.envres.2011.01.005.
36.Cappello T, Brandao F, Guilherme S, Santos MA, Maisano M, Mauceri A, et al. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining (1)H NMR metabolomics and conventional biochemical assays. Sci Total Environ. 2016;548-549:13-24. doi: 10.1016/j.scitotenv.2016.01.008.
37.Monteiro DA, Rantin FT, Kalinin AL. Dietary intake of inorganic mercury: bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus. Ecotoxicology. 2013;22(3):446-56. doi: 10.1007/s10646-012-1038-5.
38.Hermenean A, Damache G, Albu P, Ardelean A, Ardelean G, Puiu Ardelean D, et al. Histopatological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, North Western Romania. Ecotoxicol Environ Saf. 2015;119:198- 205. doi: 10.1016/j.ecoenv.2015.05.029. 
39.Valdivia PA, Zenteno-Savin T, Gardner SC, Aguirre AA. Basic oxidative stress metabolites in eastern Pacific green turtles (Chelonia mydas agassizii). Comp Biochem Physiol C Toxicol Pharmacol. 2007;146(1-2):111-7. doi: 10.1016/j. cbpc.2006.06.008.
40.Chattopadhyay S, Sahoo DK, Subudhi U, Chainy GB. Differential expression profiles of antioxidant enzymes and glutathione redox status in hyperthyroid rats: a temporal analysis. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146(3):383-91. doi: 10.1016/j.cbpc.2007.04.010. 
41.Hermes-Lima M, Carreiro C, Moreira DC, Polcheira C, Machado DP, Campos EG. Glutathione status and antioxidant enzymes in a crocodilian species from the swamps of the Brazilian Pantanal. Comp Biochem Physiol A Mol Integr Physiol. 2012;163(2):189-98. doi: 10.1016/j. cbpa.2012.06.006. 
42.Hermes-Lima M, Storey KB. Antioxidant defenses in the tolerance of freezing and anoxia by garter snakes. Am J Physiol. 1993;265(3 Pt 2):R646-52. doi: 10.1152/ ajpregu.1993.265.3.R646.