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Abstract

Background and aims: Cardiovascular diseases (CVDs) and metabolic disorders, such as type 2
diabetes mellitus (T2DM), obesity, and metabolic syndrome, frequently coexist and contribute
to a substantial global burden of morbidity and mortality. Accordingly, this review was designed
to investigate the shared pathophysiological mechanisms underlying CVDs and metabolic
disorders and to highlight emerging therapeutic strategies targeting these common pathways.
Methods: A structured narrative literature search was performed in PubMed, Scopus, and
Web of Science, covering studies published between 2019 and 2025. Keywords related to
inflammation, oxidative stress (OS), insulin resistance, endothelial dysfunction, gut microbiota,
and cardiometabolic therapies were used for this purpose. Eligible peer-reviewed studies
focusing on shared mechanisms or therapeutic implications underwent qualitative analysis.
Results: According to recent studies, low-grade inflammation, OS markers, impaired
phosphoinositide 3-kinase/protein  kinase B insulin signaling, and microbiota-derived
metabolites, such as trimethylamine N-oxide (TMAO), are strongly associated with increased
cardiometabolic risk. Moreover, clinical studies revealed that patients with T2DM have a 2—4-
fold higher risk of CVD, while increased TMAO levels are linked to a 30-60% rise in adverse
cardiovascular outcomes. Emerging therapies, including sodium-glucose cotransporter 2
inhibitors, glucagon-like peptide-1 receptor agonists, anti-inflammatory agents, and microbiota-
targeted interventions, demonstrated measurable reductions in cardiovascular events and
improved metabolic control in high-risk patients.

Conclusion: Overall, CVDs and metabolic disorders share standard mechanisms that can be
increasingly targeted with emerging therapies. Recognizing these pathways helps clinicians
and policymakers adopt integrated management strategies, promote earlier intervention in
high-risk individuals, and implement evidence-based treatments that address both conditions
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Introduction chronic inflammation, oxidative stress (OS), insulin

Cardiovascular diseases (CVDs) and metabolic disorders, resistance, and endothelial dysfunction.® In recent years,

including diabetes, obesity, and metabolic syndrome, have
had serious global health burdens in the 21st century.'
More precisely, they are the leading causes of morbidity
and mortality worldwide and impose a substantial
economic burden on healthcare systems.>* According to
the reports of the World Health Organization (WHO),
CVD-related deaths increased from 17.5 million in 2012
to 17.9 million in 2016, comprising 31% of all deaths
(2016, 2017). Projections estimate this number will reach
22.2 million by 2030. In addition, heart attack and stroke
were the leading causes of death among CVDs (WHO,
2016).* Similarly, the prevalence of metabolic disorders
is extremely high, with approximately 2 billion adults
classified as overweight or obese.” Standard underlying
mechanisms of CVDs and metabolic disorders include

significant advances have been made in elucidating
the molecular and cellular mechanisms underlying the
interplay between CVDs and these disorders.® Previous
studies have revealed how the gut microbiota influences
systemic inflammation and metabolic health, offering
new insights into the gut-heart axis.”®

Additionally, some studies have identified novel
biomarkers and therapeutic targets (e.g., micro ribonucleic
acids and epigenetic modifications) that may pave the
way for personalized medicine approaches.”’® Despite
these advancements, many questions remain unanswered,
and there is a pressing need for further research in
order to translate these findings into clinical practice.”
Current treatment approaches often focus on managing
individual risk factors, such as hypertension (HTN) or

© 2025 The Author(s); Published by Shahrekord University of Medical Sciences. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.34172/ehsj.26451
http://orcid.org/0000-0002-1863-1092
http://orcid.org/0000-0002-6286-8097
http://orcid.org/0009-0008-3228-8527
http://ehsj.skums.ac.ir
https://crossmark.crossref.org/dialog/?doi=10.34172/ehsj.26451&domain=pdf
mailto:sourifaraz@gmail.com

hyperglycemia. However, there is growing recognition
of the need for integrated strategies that address the
underlying mechanisms shared by these conditions."
Despite extensive research on cardiovascular and
metabolic disorders, existing reviews address these
conditions separately or focus on isolated pathways.
However, a comprehensive and integrated synthesis of the
shared molecular mechanisms, including inflammation,
OS, insulin resistance, endothelial dysfunction, and gut
microbiota dysbiosis, remains limited. Furthermore,
recent therapeutic advancements targeting these
interconnected pathways have not been thoroughly
evaluated. This gap highlights the need for an updated,
mechanistically focused review that unifies current
knowledge and clarifies how these shared pathways can
inform more effective clinical and public health strategies.

Materials and Methods

This review was conducted as a narrative synthesis of
the current evidence on the shared pathophysiological
mechanisms linking CVDs and metabolic disorders.
A comprehensive literature search was performed in
PubMed, Scopus, and Web of Science, including studies
published from 2019 to 2025. The search strategy
incorporated a combination of medical subject headings

and free-text keywords, including “cardiovascular
diseases,” “metabolic disorders,” “diabetes,” “obesity;,”
“metabolic  syndrome,”  “inflammation,”  “oxidative

» o« » o«

stress,” “insulin resistance,” “endothelial dysfunction,”
“gut microbiota,” “cardiometabolic mechanisms,” and
“therapeutic approaches,” using Boolean operators, such
as AND, OR, and NOT, to refine the results.

Studies were eligible for inclusion if they (1) were peer-
reviewed original research articles, systematic reviews,
meta-analyses, or narrative reviews, (2) were published
in English, and (3) focused on mechanistic links or
shared biological pathways between CVDs and metabolic
disorders. It should be noted that both human studies
and relevant animal model studies were considered
when they provided mechanistic insights applicable to
cardiometabolic interactions.

The exclusion criteria included (1) non-peer-reviewed
publications (e.g., editorials, letters, and conference
abstracts), (2) studies unrelated to the shared mechanisms
of CVDs and metabolic disorders, (3) articles focusing
solely on single-disease outcomes without addressing
cardiometabolic  interplay, and (4) publications
lacking mechanistic, pathophysiological, or clinically
relevant content.

Titles, abstracts, and full texts were screened to ensure
relevance, and the final selection of studies was synthesized
qualitatively. Considering that this is a narrative rather
than a systematic review, no formal risk-of-bias assessment
or quantitative meta-analysis was performed.

Shared Pathophysiological Mechanisms
CVDs and metabolic disorders (diabetes, obesity, and

metabolic syndrome) are interconnected through shared
pathophysiological mechanisms, and these mechanisms
create a bidirectional relationship in which each condition
exacerbates the progression of the other. Key pathways
include chronic inflammation, OS, insulin resistance,
endothelial dysfunction, and the emerging role of gut
microbiota® (Table 1). Gaining insight into these shared
mechanisms is essential for designing targeted therapeutic
strategies that tackle the underlying causes of these
interrelated disorders.

Chronic Inflammation

Chronic low-grade inflammation represents a core
characteristic common to both CVDs and metabolic
disorders.*® In metabolic conditions such as obesity and
diabetes, visceral fat is widely recognized as a metabolically
active tissue with endocrine properties, releasing
numerous pro-inflammatory substances that contribute
to systemic inflammation. Among them, tumor necrosis
factor-alpha (TNF-a), interleukin 6 (IL-6), and C-reactive
protein (CRP) play pivotal roles in systemic inflammation
promotion and metabolic dysregulation.’® Research has
demonstrated that inflammatory cytokines promote
endothelial cell activation, thereby inducing elevated
expression of key adhesion molecules, such as vascular
cell adhesion molecule-1 (VCAM-1) and intercellular
adhesion molecule-1 (ICAM-1), facilitating leukocyte
recruitment and vascular inflammation. These molecules
enhance leukocyte adhesion and migration across
the endothelium, ultimately contributing to vascular
inflammation and impaired endothelial function.®
Moreover, these enhanced adhesion and migration
processes facilitate the recruitment of monocytes and
T-cells into the arterial wall, where they differentiate
into macrophages and foam cells, respectively. Cell
accumulation in the arterial wall drives atherosclerotic
plaque formation and destabilization, thereby increasing
the risk of heart attack and stroke.”

On the other hand, in obesity, hypertrophied adipocytes
become dysfunctional and release free fatty acids (FFAs)
into the bloodstream. FFAs engage toll-like receptors
(TLRs) on immune cells, thus prompting the secretion of
further pro-inflammatory cytokines. This TLR-mediated
cytokine release creates a vicious cycle of inflammation
that exacerbates both metabolic and cardiovascular
dysfunction (Figure 1).**

Visceral adiposity enhances lipolysis and increases
FFA levels, further stimulating inflammation (IL-6 and
TNF-a) via TLR activation on immune cells. These events
contribute to endothelial activation, upregulation of
adhesion molecules (VCAM-1 and ICAM-1), leukocyte
recruitment, and differentiation into foam cells, ultimately
leading to plaque formation and atherosclerosis. Similarly,
IL-6 contributes to insulin resistance by inducing
the suppressor of cytokine signaling 3, a protein that
interferes with insulin signaling, and promoting hepatic
gluconeogenesis, which elevates blood glucose levels.”
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Table 1. A Summary of Human Study Findings on the Pathophysiological Interplay Between Cardiovascular Diseases and Metabolic Disorders

Pathophysiological
Mechanism

Human Study Findings

Implications/Conclusions

References

Chronic inflammation

Insulin resistance

Endothelial dysfunction

Gut microbiota dysbiosis

Adipokine imbalance

Sympathetic nervous system
overactivity

Chronic hyperglycemia
Renin-angiotensin-
aldosterone system (RAAS)
activation

Visceral fat accumulation

Endothelial nitric oxide
synthase (eNOS) dysfunction

Hypercoagulability

Mitochondrial dysfunction

Chronic kidney disease
(CKD) and CVD

Autonomic dysfunction

Leptin resistance

Inflammatory cytokine
release from adipose tissue

Endocrine disruptors

Elevated CRP, IL-6, and TNF-a in patients with CVD and
type 2 diabetes (T2D)

Insulin resistance observed in patients with hypertension
(HTN), coronary artery disease, and heart failure

Reduced flow-mediated dilation and NO bioavailability
in diabetic and cardiovascular patients

Altered Firmicutes/Bacteroidetes ratio and elevated
TMAO levels in patients with obesity, T2D, and CVD

Elevated leptin and reduced adiponectin in patients with
CVD and metabolic syndrome

Sympathetic overactivity observed in patients with
obesity and HTN

Elevated blood glucose levels contribute to endothelial

injury and arterial stiffening.

Increased RAAS activity in patients with metabolic
syndrome and CVD

Abdominal fat is linked to the increased risk of heart
disease and metabolic disturbances.

Impaired eNOS function in patients with T2D and HTN
Increased fibrinogen and D-dimer levels in patients with
CVD and metabolic disorders

Reduced mitochondrial function in skeletal muscles and
vasculature of patients with obesity and CVD

CKD accelerates cardiovascular risk in patients with
metabolic disorders.

Reduced heart rate variability and increased sympathetic
tone in CVD and metabolic disorder patients

Increased leptin levels and resistance in obesity and
diabetes contribute to vascular dysfunction.

The overproduction of IL-6, TNF-a, and other pro-
inflammatory cytokines from visceral fat in CVD and
metabolic patients

Exposure to endocrine-disrupting chemicals correlates

with increased risk of both CVD and metabolic disorders.

Chronic inflammation contributes to atherosclerosis
and insulin resistance.

Insulin resistance is a central mechanism linking
metabolic and cardiovascular disorders.

Endothelial dysfunction serves as an early marker for
atherosclerosis.

Microbiota-derived metabolites like TMAO promote
inflammation and atherogenesis.

The dysregulation of adipokines exacerbates
inflammation and endothelial dysfunction.

Sympathetic overactivation accelerates both metabolic
and cardiovascular damage.

Chronic hyperglycemia accelerates cardiovascular

complications in metabolic disorders.

RAAS overactivity contributes to insulin resistance and
vascular damage.

Visceral adiposity induces inflammation and alters
lipid metabolism.

eNOS dysfunction accelerates vascular stiffness and
endothelial injury.

Hypercoagulability increases thrombotic risk in
metabolic and cardiovascular conditions.

Mitochondrial dysfunction exacerbates metabolic and
cardiovascular decline.

Kidney dysfunction promotes vascular calcification
and increases CVD risk.

Autonomic dysfunction is associated with poor
prognosis in both conditions.

Leptin resistance leads to inflammation, endothelial
dysfunction, and cardiovascular risk.

Inflammatory cytokines contribute to systemic

inflammation, insulin resistance, and vascular damage.

Environmental factors exacerbate metabolic and
cardiovascular risks through hormonal modulation.

20

21

22

23

24

25

26

27

28

29

Note. CRP: C-reactive protein; IL-6: Interleukin 6; TNF-a: Tumor necrosis factor-alpha; CVD: Cardiovascular disease; NO: Nitric oxide; TMAO:

Trimethylamine N-oxide.

TNF-a impairs insulin signaling by inhibiting insulin
receptor substrate 1 (IRS-1) and promotes lipolysis, thereby
increasing FFAs, which exacerbate insulin resistance.*

Oxidative Stress

OS, a disturbance in the equilibrium between reactive
oxygen species (ROS) production and antioxidant
defenses, is a key pathophysiological process in both
CVDs and metabolic disorders. Excessive ROS production
damages cellular components, such as lipids, proteins,
and deoxyribonucleic acid (DNA), contributing to the
development and progression of both conditions.” Cells
counteract OS by triggering a network of antioxidant
responses, primarily arranged by the transcription factor
nuclear factor erythroid 2- 2-related factor 2 (Nrf2).’® In
the absence of stress, Nrf2 remains inactive as it is bound
by Kelch-like ECH-associated protein 1 (Keapl) in the
cytoplasm, which promotes its continuous degradation
via the proteasome pathway*® However, under OS

conditions, the post-translational modifications of Keapl
impair its ability to sequester Nrf2 in the cytoplasm,
thereby facilitating Nrf2 stabilization and nuclear
translocation.® After translocating to the nucleus, Nrf2
binds to antioxidant response elements in the promoter
regions of target genes, inducing the transcription of
antioxidant enzymes like superoxide dismutase, catalase,
and glutathione peroxidase. Generally, these enzymes
enhance the cell’s ability to detoxify ROS and limit
oxidative damage."’ In metabolic disorders and CVDs,
chronic OS can impair this pathway, leading to increased
cellular damage and disease progression.” Therapeutic
strategies often aim to enhance Nrf2 activity to bolster
the antioxidant defense system, potentially mitigating the
adverse effects of OS in these conditions.*?

On the other hand, ROS activate kinases such as c-Jun
N-terminal kinase (JNK) and IkB kinase (IKK), which
phosphorylate IRS-1, thereby impairing its function. This
ROS-induced impairment of IRS-1 reduces glucose uptake
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in muscle and fat tissue, thereby elevating blood glucose degradation. The OS-induced modifications of Keapl
and worsening metabolic dysfunction (Figure 2).* diminish its ability to sequester Nrf2, thereby enhancing

Under physiological conditions, Nrf2 is sequestered Nrf2 stabilization and nuclear translocation, which,
in the cytoplasm by Keapl and targeted for proteasomal in turn, activate the transcription of antioxidant genes
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Figure 1. Pathophysiological Link Between Insulin Resistance, Visceral Adiposity, and Atherosclerosis
Note. SOCS3: Suppressor of cytokine signaling 3; IL-6: Interleukin 6; TNF-a: Tumor necrosis factor-alpha; IRS-1: Insulin receptor substrate 1; TLR: Toll-like receptor;
FFA: Free fatty acid; VCAM-1: Vascular cell adhesion molecule-1; ICAM-1: Intercellular adhesion molecule-1
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Figure 2. Role of Oxidative Stress and Nuclear Factor Erythroid 2-Related Factor 2 Signaling in the Development of Cardiometabolic Disorders

Note. ARE: Antioxidant response element; Nrf2: Nuclear factor erythroid 2-related factor 2; Keap1: Kelch-like ECH-associated protein 1; ROS: Reactive oxygen
species; CAT: Catalase; SOD: Superoxide dismutase; GPx: Glutathione peroxidase; FFA: Free fatty acid; NADH: Nicotinamide adenine dinucleotide; FADH: Flavin
adenine dinucleotide; ETC: Electron transport chain; NO: Nitric oxide; JNK: c-Jun N-terminal kinase; IKK: I«B kinase; IRS-1: Insulin receptor substrate 1
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(SOD, GPx, and CAT) to counteract ROS. In chronic
OS, metabolic disorders (e.g., hyperglycemia and
hyperlipidemia) enhance mitochondrial ROS production
and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase activity, respectively. Excessive
ROS leads to the conversion of nitric oxide (NO) to
peroxynitrite, impaired vasodilation, increased vascular
permeability, leukocyte adhesion, and plaque formation,
ultimately promoting atherosclerosis. Simultaneously,
ROS activate stress kinases (IKK and JNK), which
impair insulin signaling and glucose uptake, leading to
hyperglycemia and creating a vicious cycle.

Insulin Resistance

Insulin resistance, a hallmark of T2D and metabolic
syndrome, is a key link between metabolic disorders and
CVDs. It occurs when cells in tissues like muscle, liver, and
fat become less responsive to insulin, impairing glucose
uptake and metabolism. The insulin signaling pathway is
central to this process.* Under normal conditions, insulin
binds to its receptor (INSR), activating receptor tyrosine
kinases that phosphorylate IRSs. This IRS phosphorylation
activates the phosphoinositide 3-kinase/protein kinase
B (PI3K/Akt) signaling pathway, which is crucial for
mediating the translocation of glucose transporter type
4 (GLUTH4) to the cell membrane. As a result, glucose
uptake by cells is significantly increased, supporting

Normal Insulin Signaling
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effective glucose utilization. Moreover, it inhibits hepatic
gluconeogenesis and supports cell growth and survival.*®
This pathway is disrupted in insulin resistance.*® Chronic
inflammation, OS, and lipid accumulation (diacylglycerol
and ceramides) activate stress kinases, such as JNK and IkB
kinase beta.*” These kinases phosphorylate IRS proteins on
inhibitory sites, thereby reducing PI3K/Akt activation. As
a result, GLUT4 translocation is impaired, glucose uptake
decreases, and hepatic glucose production increases,
leading to hyperglycemia.*® In addition, hyperglycemia
promotes the formation of advanced glycation end
products, which cross-link with collagen and other
proteins in the vascular wall, leading to increased stiffness
and reduced compliance.”” Furthermore, impaired insulin
signaling alters lipid homeostasis by elevating triglyceride
and low-density lipoprotein (LDL) cholesterol levels
while concurrently decreasing high-density lipoprotein
cholesterol, thereby fostering a lipid profile strongly
associated with atherosclerotic risk.”

On the other hand, insulin resistance impairs endothelial
function by reducing NO production while increasing
endothelin-1 (ET-1) expression, a potent vasoconstrictor.
This insulin-resistance-induced imbalance in NO and
ET-1 leads to impaired vasodilation, increased vascular
resistance, and HTN, further exacerbating cardiovascular
risk (Figure 3).°' It is noteworthy that therapeutic
approaches often focus on improving insulin sensitivity
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Figure 3. Schematic Representation of Normal Insulin Signaling Versus Insulin Resistance and Its Vascular Consequences
IRS: Insulin receptor substrate; GLUT4: Glucose transporter type 4; PI3K/Akt: Phosphoinositide 3-kinase/protein kinase B; NO: Nitric oxide; ET-1: Endothelin-1;

IKKB: 1kB kinase beta; JNK: c-Jun N-terminal kinase
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through lifestyle changes, medications (e.g., metformin),
or targeting inflammatory pathways in order to restore
proper insulin signaling.*

Under normal conditions, insulin binding to its
receptor activates the IRS-PI3K/Akt pathway, leading
to GLUT4 translocation and increased glucose uptake.
Moreover, in insulin resistance, pro-inflammatory
cytokines, OS, and lipid accumulation activate the IkB
kinase beta and JNK pathways, inhibiting IRS function
and downstream signaling, leading to reduced glucose
uptake and hyperglycemia. Additionally, insulin resistance
impairs endothelial function by decreasing NO while
increasing ET-1, thereby promoting vasoconstriction and
contributing to HTN.

Endothelial Dysfunction

The endothelium, a monolayer of cells that lines blood
vessels, is essential for maintaining vascular homeostasis.>
Endothelial dysfunction, marked by decreased NO
bioavailability,heightened OS,andincreasedinflammation,
is a pivotal early event in the pathogenesis of both CVDs
and metabolic disorders. Furthermore, it augments the
macrophage uptake of oxidized LDL, fostering foam cell
formation and hastening plaque progression.** Under
physiological conditions, endothelial NO synthase (eNOS)
generates NO, which facilitates vasodilation, suppresses
inflammation, and inhibits platelet aggregation.®® Risk
factors like hyperglycemia, OS, and inflammation reduce
NO bioavailability in CVDs and metabolic diseases. This
reduction in NO occurs due to eNOS uncoupling, in
which eNOS produces superoxide rather than NO, as well
as increased ROS-mediated scavenging of NO.*® Excess
ROS, generated by nicotinamide adenine dinucleotide
phosphate oxidases and mitochondrial dysfunction,
directly damages endothelial cells and reduces NO levels.
ROS trigger pro-inflammatory signaling pathways,
notably activating nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-xB). This activation
enhances the expression of adhesion molecules,
such as ICAM-1 and VCAM-1.* Moreover, chronic
inflammation, driven by cytokines such as TNF-a and IL-
6, disrupts endothelial function by activating NF-kB and
other signaling pathways. In addition, this inflammation-
induced activation leads to increased expression of
adhesion molecules, chemokines, and endothelin-1,
further impairing vascular homeostasis.”” Additionally,
endothelial dysfunction contributes to insulin resistance
by impairing insulin delivery to skeletal muscle and
adipose tissue.”® Insulin resistance in endothelial cells
reduces PI3K/Akt signaling, thereby diminishing eNOS
activation and NO production.”

Gut Microbiota

Emerging evidence highlights the role of gut microbiota
in the pathogenesis of both CVDs and metabolic
disorders.®*% The gut microbiota, which encompasses a
wide variety of microorganisms within the gastrointestinal

tract, is essential for regulating host metabolic processes,
controlling inflammation, and influencing immune
responses.® Disruptions in its composition can initiate
innate immune responses through key pathways involving
TLRs and the nucleotide-binding oligomerization
domain-like receptor family pyrin domain-containing 3
inflammasome. This immunological activation leads to
the increased secretion of pro-inflammatory cytokines,
including TNF-a and IL-6, which play a critical role
in the onset and progression of metabolic diseases and
CVDs.# Further, the gut microbiota influences bile acid
profiles, which, in turn, regulate lipid metabolism and
glucose homeostasis by activating receptors such as the
farnesoid X receptor and the Takeda G protein-coupled
receptor 5. Based on previous studies, dysbiosis alters
bile acid composition, impairing these signaling pathways
and contributing to metabolic disorders.**" It is also linked
to enhanced intestinal permeability, allowing bacterial
endotoxins (e.g., lipopolysaccharide) to translocate into
the bloodstream.® Furthermore, gut microbiota generate
various metabolites, including short-chain fatty acids
(SCFAs) such as acetate, propionate, and butyrate, as well
as trimethylamine N-oxide (TMAO) and bile acids.®
SCFAs are acknowledged for their anti-inflammatory
properties and advantageous effects on metabolic health.”
In contrast, TMAO, produced from dietary nutrients
(e.g., choline and carnitine), is associated with increased
atherosclerotic and cardiovascular risk.”" Dysbiosis alters
the balance of these metabolites, thereby promoting
inflammation and metabolic dysfunction.”

Clinical Implications and Therapeutic Approaches

The shared pathophysiological mechanisms between
CVDs and metabolic disorders (diabetes, obesity, and
metabolic syndrome) provide a foundation for developing
integrated therapeutic strategies.” This section will explore
the clinical implications of these shared mechanisms and
discuss current and emerging therapeutic approaches,
including lifestyle interventions, pharmacological
therapies, personalized medicine, and future directions.

Lifestyle Interventions

Lifestyle modifications are the cornerstone of managing
both CVDs and metabolic disorders. More precisely,
these interventions not only address risk factors such as
obesity, HTN, and dyslipidemia but also target underlying
mechanisms, such as inflammation, OS, and insulin
resistance.” The Mediterranean diet, characterized by
a high intake of fruits, vegetables, whole grains, nuts,
and olive oil, is renowned for its health benefits and
has been shown to reduce inflammation, improve lipid
profiles, and enhance insulin sensitivity.”” According
to some studies, diets emphasizing plant-based foods
and minimizing animal products are associated with
lower inflammation, improved endothelial function, and
reduced cardiovascular risk.*”* Moreover, research has
reported that in addition to a healthy diet, regular exercise
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improves insulin sensitivity, reduces blood pressure,
and enhances cardiovascular fitness.”” Various forms of
physical activity (e.g., aerobic exercise, resistance training,
and high-intensity interval training) have demonstrated
significant therapeutic benefits for individuals with CVDs
and metabolic disorders. Likewise, exercise reduces
visceral fat, a vital source of pro-inflammatory cytokines,
thereby lowering systemic inflammation.”” The findings
of one study revealed that losing even a small amount of
weight (about 5-10% of one’s body weight) can lead to
substantial improvements in metabolic health and reduce
the risk of CVDs.®

Pharmacological Therapies

Pharmacological treatments targeting shared mechanisms
between CVDs and metabolic disorders have shown
promise in improving outcomes for patients with these
conditions. These therapies include both established
drugs and novel agents under investigation.®*

Metformin, a standard first-line treatment for T2D,
primarily acts by inhibiting hepatic gluconeogenesis,
thereby reducing glucose production in the liver. Similarly,
it improves insulin sensitivity in peripheral tissues,
leading to better glucose uptake by muscle and adipose
cells. Moreover, it activates adenosine monophosphate-
activated protein kinase, a critical enzyme that regulates
cellular energy balance, thereby further suppressing
glucose production and promoting fatty acid oxidation.*?
In metabolic diseases, metformin helps lower blood
glucose levels, improves lipid profiles, and may aid in
weight management.*® In CVDs, its benefits are attributed
to improved metabolic control, reduced inflammation,
and potential protective effects on endothelial function,
which generally lower the risk of cardiovascular events.
These mechanisms make metformin a cornerstone in the
management of metabolic and cardiovascular conditions.**

Likewise, sodium-glucose cotransporter 2 (SGLT2)
inhibitors, such as empagliflozin and dapagliflozin,
function by inhibiting SGLT2 in the proximal tubules of
the kidney, thereby reducing glucose reabsorption and
increasing its excretion in the urine (glucosuria). This
mechanism lowers blood glucose levels independently
of insulin.** In metabolic diseases, SGLT2 inhibitors
also improve glycemic control, reduce body weight, and
lower blood pressure.® In CVDs, they provide significant
benefits by reducing heart failure hospitalizations and
alleviating cardiovascular outcomes.”” These effects are
attributed to their ability to promote natriuresis (sodium
excretion), reduce fluid overload, improve cardiac energy
metabolism, and potentially reduce inflammation and OS.
These dual benefits make SGLT2 inhibitors valuable in
managing both metabolic and cardiovascular conditions.*

Moreover, glucagon-like peptide-1 (GLP-1) receptor
agonists, such as liraglutide and semaglutide, mimic the
actions of the natural incretin hormone GLP-1. They help
lower blood sugar by boosting glucose-dependent insulin
secretion, suppressing glucagon release, and slowing

Cardiometabolic crosstalk and the_

gastric emptying, all of which contribute to lowering blood
glucose levels.* In metabolic conditions, GLP-1 receptor
agonists help regulate blood glucose levels, facilitate
weight reduction, and decrease appetite.”® In the context
of CVDs, these receptor agonists have demonstrated the
ability to lower the risk of major adverse cardiovascular
events, including heart attacks and strokes. Additionally,
they achieve this goal by enhancing endothelial function,
reducing systemic inflammation, supporting weight
loss, and controlling blood pressure. These multifaceted
benefits make GLP-1 receptor agonists effective in
managing both metabolic and cardiovascular conditions.”!

Statins lower cholesterol by blocking 3-hydroxy-3-
methylglutaryl-coenzyme A reductase, which is an
essential liver enzyme in cholesterol production. This
inhibition reduces LDL cholesterol (LDL-C) production
butincreases LDL particle clearance from the bloodstream.
They also have anti-inflammatory effects, as evidenced
by reductions in CRP levels. In addition, statins improve
lipid profiles by lowering LDL-C, triglycerides, and
total cholesterol while modestly increasing high-density
lipoprotein cholesterol.”> In CVDs, they considerably
reduce the risk of atherosclerotic cardiovascular events
(e.g., heart attack and stroke) by stabilizing atherosclerotic
plaques, reducing inflammation, and improving
endothelial function. These effects make statins the
basis for preventing and managing cardiovascular and
metabolic disorders.”

Drugs targeting specific inflammatory pathways, such
as IL-1p inhibitors (canakinumab) and TNF-a inhibitors,
are being investigated for their potential to reduce
cardiovascular risk in patients with metabolic disorders.**
> Anti-inflammatory agents target and reduce chronic
inflammation, a key driver in both metabolic disorders
and CVDs. They function by inhibiting pro-inflammatory
pathways (e.g., cytokines like IL-1B, IL-6, and TNF-a)
or modulating immune responses. Furthermore, these
agents improve insulin sensitivity, reduce hyperglycemia,
and mitigate complications such as insulin resistance and
fatty liver disease.”*> In CVDs, they also lower the risk
of atherosclerosis and myocardial infarction by reducing
vascular inflammation, stabilizing plaques, and improving
endothelial function. By addressing the underlying
inflammatory processes, anti-inflammatory agents also
provide therapeutic benefits in the management of these
interconnected conditions.”**

Novel antioxidants, such as mitochondria-targeted
agents (e.g., MitoQ), aim to reduce OS while improving
endothelial function. These agents hold promise
for treating both CVDs and metabolic disorders.”
Antioxidants act by neutralizing ROS and reducing
OS, a key contributor to cellular damage in metabolic
disorders and CVDs. More precisely, they enhance the
body’s natural defense mechanisms by scavenging free
radicals and protecting cells from oxidative damage.
Moreover, antioxidants improve insulin sensitivity, reduce
inflammation, and protect pancreatic beta cells, helping
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to manage diabetes and its complications.”® In CVDs,
they also prevent oxidative damage to lipids, proteins,
and DNA, reducing the progression of atherosclerosis,
improving endothelial function, and lowering the risk of
heart failure and myocardial infarction. By mitigating OS,
antioxidants play a protective role in these conditions.”

Probiotics, prebiotics, and fecal transplants aim to
restore gut microbiota balance and reduce inflammation.
It should be noted that gut microbiota modulators
influence the microbiome by promoting beneficial
bacteria and suppressing harmful ones, thereby improving
gut health and systemic outcomes.” This modulation
influences metabolic and cardiovascular health through
several mechanisms, including improved gut barrier
function, reduced systemic inflammation, and enhanced
production of metabolites (e.g., SCFAs). Moreover,
these modulators improve insulin sensitivity, glucose
metabolism, and lipid profiles while reducing obesity-
related inflammation.** In CVDs, they help lower blood
pressure, reduce atherosclerosis, and improve lipid
metabolism by decreasing systemic inflammation and
OS. By targeting the gut microbiome, these agents offer a
novel approach to managing metabolic and cardiovascular
conditions.®*

Personalized Medicine

Personalized medicine in metabolic disorders and CVDs
tailors treatment based on individual genetic, molecular,
and clinical profiles. It uses biomarkers, genetic testing,
and advanced diagnostics to predict disease risk, select
optimal therapies, and monitor responses. Furthermore,
it helps customize diabetes management by targeting
specific pathways (e.g., insulin resistance and beta-
cell dysfunction) and selecting drugs such as GLP-1
agonists or SGLT2 inhibitors based on patient profiles.
Additionally, it guides the use of statins, antiplatelet
therapies, or anti-inflammatory agents based on genetic
predispositions (proprotein convertase subtilisin/kexin
type 9 mutations) or biomarker levels (high-sensitivity
CRP and LDL-C).**'" Biomarkers such as high-
sensitivity CRP, TMAO, and micro ribonucleic acids can
help identify patients at high risk for CVDs and metabolic
complications. These biomarkers serve a dual purpose;
they help inform clinical treatment decisions and are
essential for evaluating how well a patient is responding to
therapy.'”>1” Recent advancements in omics technologies
(e.g., genomics, proteomics, and metabolomics) are
accelerating the discovery of new biomarkers and potential
therapeutic targets.'*

On the other hand, genetic variants associated with
insulin resistance, inflammation, and lipid metabolism
can influence an individual’s response to therapy.'®
Further, epigenetic changes (e.g., DNA methylation and
histone modifications) affect gene expression involved
in cardiovascular and metabolic diseases.'” Targeting
these modifications with epigenetic therapies is an area of
active research. Based on research, personalized dietary

recommendations informed by genetic and metabolic
profiles can also optimize outcomes for patients with
CVDs and metabolic disorders.'” By focusing on
individual variability, personalized medicine improves
treatment efficacy, reduces side effects, and enhances
outcomes in metabolic and cardiovascular care.'*®

Future Directions

The future of managing CVDs and metabolic disorders
will leverage multi-target therapies and advanced
technologies.”? Combining SGLT2 inhibitors and GLP-
1 receptor agonists provides dual glycemic control and
cardiovascular protection.'” In addition, nutraceuticals
such as curcumin and resveratrol may improve outcomes
through their anti-inflammatory and antioxidant
properties.!’®!'!  Furthermore, artificial intelligence
enhances risk prediction and treatment personalization
through complex data analysis,'”? while mesenchymal
stem cells hold potential for tissue repair.'”® Generally,
a comprehensive public health strategy is crucial for
addressing the global burden of these diseases.

Limitations of the Study

Despite the comprehensive exploration of shared
pathophysiological mechanisms between CVDs and
metabolic disorders, this review had several limitations.
First, the scope was restricted to studies published in
English, potentially excluding relevant data from non-
English literature. Moreover, while efforts were made to
include the most recent and high-quality evidence, the
rapidly evolving nature of research in cardiovascular and
metabolic fields indicates that some emerging findings
may not be captured. Furthermore, heterogeneity
among experimental models, clinical populations, and
methodologies in the included studies may have limited
the ability to draw definitive causal conclusions. Finally,
although this review highlights potential therapeutic
approaches, translating these strategies from preclinical
studies to clinical practice remains a challenge.
Accordingly, the long-term efficacy and safety of these
strategies require further validation.

Conclusion

Cardiometabolic ~ disorders stem from complex
interactions among inflammatory, oxidative, metabolic,
and endothelial pathways. Therefore, addressing these
combined effects, rather than isolated risk factors,
is crucial. Advances in therapeutics and biomarkers
offer opportunities to identify risk precisely and target
interventions. Nonetheless, further research is needed to
translate mechanistic insights into scalable clinical and
public health solutions. Eventually, linking molecular
discoveries, patient data, and population-based prevention
will improve strategies to combat the global burden of
these diseases.
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