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Introduction
Cardiovascular diseases (CVDs) and metabolic disorders, 
including diabetes, obesity, and metabolic syndrome, have 
had serious global health burdens in the 21st century.1 
More precisely, they are the leading causes of morbidity 
and mortality worldwide and impose a substantial 
economic burden on healthcare systems.2,3 According to 
the reports of the World Health Organization (WHO), 
CVD-related deaths increased from 17.5 million in 2012 
to 17.9 million in 2016, comprising 31% of all deaths 
(2016, 2017). Projections estimate this number will reach 
22.2 million by 2030. In addition, heart attack and stroke 
were the leading causes of death among CVDs (WHO, 
2016).4 Similarly, the prevalence of metabolic disorders 
is extremely high, with approximately 2 billion adults 
classified as overweight or obese.5 Standard underlying 
mechanisms of CVDs and metabolic disorders include 

chronic inflammation, oxidative stress (OS), insulin 
resistance, and endothelial dysfunction.6 In recent years, 
significant advances have been made in elucidating 
the molecular and cellular mechanisms underlying the 
interplay between CVDs and these disorders.6 Previous 
studies have revealed how the gut microbiota influences 
systemic inflammation and metabolic health, offering 
new insights into the gut-heart axis.7,8

Additionally, some studies have identified novel 
biomarkers and therapeutic targets (e.g., micro ribonucleic 
acids and epigenetic modifications) that may pave the 
way for personalized medicine approaches.9,10 Despite 
these advancements, many questions remain unanswered, 
and there is a pressing need for further research in 
order to translate these findings into clinical practice.11 
Current treatment approaches often focus on managing 
individual risk factors, such as hypertension (HTN) or 
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Abstract
Background and aims: Cardiovascular diseases (CVDs) and metabolic disorders, such as type 2 
diabetes mellitus (T2DM), obesity, and metabolic syndrome, frequently coexist and contribute 
to a substantial global burden of morbidity and mortality. Accordingly, this review was designed 
to investigate the shared pathophysiological mechanisms underlying CVDs and metabolic 
disorders and to highlight emerging therapeutic strategies targeting these common pathways.
Methods: A structured narrative literature search was performed in PubMed, Scopus, and 
Web of Science, covering studies published between 2019 and 2025. Keywords related to 
inflammation, oxidative stress (OS), insulin resistance, endothelial dysfunction, gut microbiota, 
and cardiometabolic therapies were used for this purpose. Eligible peer-reviewed studies 
focusing on shared mechanisms or therapeutic implications underwent qualitative analysis.
Results: According to recent studies, low-grade inflammation, OS markers, impaired 
phosphoinositide 3-kinase/protein kinase B insulin signaling, and microbiota-derived 
metabolites, such as trimethylamine N-oxide (TMAO), are strongly associated with increased 
cardiometabolic risk. Moreover, clinical studies revealed that patients with T2DM have a 2–4-
fold higher risk of CVD, while increased TMAO levels are linked to a 30–60% rise in adverse 
cardiovascular outcomes. Emerging therapies, including sodium-glucose cotransporter 2 
inhibitors, glucagon-like peptide-1 receptor agonists, anti-inflammatory agents, and microbiota-
targeted interventions, demonstrated measurable reductions in cardiovascular events and 
improved metabolic control in high-risk patients.
Conclusion: Overall, CVDs and metabolic disorders share standard mechanisms that can be 
increasingly targeted with emerging therapies. Recognizing these pathways helps clinicians 
and policymakers adopt integrated management strategies, promote earlier intervention in 
high-risk individuals, and implement evidence-based treatments that address both conditions 
simultaneously.
Keywords: Cardiovascular diseases, Metabolic disorders, Shared mechanisms, Therapeutic 
approaches, Personalized medicine
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hyperglycemia. However, there is growing recognition 
of the need for integrated strategies that address the 
underlying mechanisms shared by these conditions.12

Despite extensive research on cardiovascular and 
metabolic disorders, existing reviews address these 
conditions separately or focus on isolated pathways. 
However, a comprehensive and integrated synthesis of the 
shared molecular mechanisms, including inflammation, 
OS, insulin resistance, endothelial dysfunction, and gut 
microbiota dysbiosis, remains limited. Furthermore, 
recent therapeutic advancements targeting these 
interconnected pathways have not been thoroughly 
evaluated. This gap highlights the need for an updated, 
mechanistically focused review that unifies current 
knowledge and clarifies how these shared pathways can 
inform more effective clinical and public health strategies.

Materials and Methods
This review was conducted as a narrative synthesis of 
the current evidence on the shared pathophysiological 
mechanisms linking CVDs and metabolic disorders. 
A comprehensive literature search was performed in 
PubMed, Scopus, and Web of Science, including studies 
published from 2019 to 2025. The search strategy 
incorporated a combination of medical subject headings 
and free-text keywords, including “cardiovascular 
diseases,” “metabolic disorders,” “diabetes,” “obesity,” 
“metabolic syndrome,” “inflammation,” “oxidative 
stress,” “insulin resistance,” “endothelial dysfunction,” 
“gut microbiota,” “cardiometabolic mechanisms,” and 
“therapeutic approaches,” using Boolean operators, such 
as AND, OR, and NOT, to refine the results.

Studies were eligible for inclusion if they (1) were peer-
reviewed original research articles, systematic reviews, 
meta-analyses, or narrative reviews, (2) were published 
in English, and (3) focused on mechanistic links or 
shared biological pathways between CVDs and metabolic 
disorders. It should be noted that both human studies 
and relevant animal model studies were considered 
when they provided mechanistic insights applicable to 
cardiometabolic interactions.

The exclusion criteria included (1) non-peer-reviewed 
publications (e.g., editorials, letters, and conference 
abstracts), (2) studies unrelated to the shared mechanisms 
of CVDs and metabolic disorders, (3) articles focusing 
solely on single-disease outcomes without addressing 
cardiometabolic interplay, and (4) publications 
lacking mechanistic, pathophysiological, or clinically 
relevant content.

Titles, abstracts, and full texts were screened to ensure 
relevance, and the final selection of studies was synthesized 
qualitatively. Considering that this is a narrative rather 
than a systematic review, no formal risk-of-bias assessment 
or quantitative meta-analysis was performed.

Shared Pathophysiological Mechanisms
CVDs and metabolic disorders (diabetes, obesity, and 

metabolic syndrome) are interconnected through shared 
pathophysiological mechanisms, and these mechanisms 
create a bidirectional relationship in which each condition 
exacerbates the progression of the other. Key pathways 
include chronic inflammation, OS, insulin resistance, 
endothelial dysfunction, and the emerging role of gut 
microbiota6 (Table 1). Gaining insight into these shared 
mechanisms is essential for designing targeted therapeutic 
strategies that tackle the underlying causes of these 
interrelated disorders. 

Chronic Inflammation
Chronic low-grade inflammation represents a core 
characteristic common to both CVDs and metabolic 
disorders.30 In metabolic conditions such as obesity and 
diabetes, visceral fat is widely recognized as a metabolically 
active tissue with endocrine properties, releasing 
numerous pro-inflammatory substances that contribute 
to systemic inflammation. Among them, tumor necrosis 
factor-alpha (TNF-α), interleukin 6 (IL-6), and C-reactive 
protein (CRP) play pivotal roles in systemic inflammation 
promotion and metabolic dysregulation.31 Research has 
demonstrated that inflammatory cytokines promote 
endothelial cell activation, thereby inducing elevated 
expression of key adhesion molecules, such as vascular 
cell adhesion molecule-1 (VCAM-1) and intercellular 
adhesion molecule-1 (ICAM-1), facilitating leukocyte 
recruitment and vascular inflammation. These molecules 
enhance leukocyte adhesion and migration across 
the endothelium, ultimately contributing to vascular 
inflammation and impaired endothelial function.32 
Moreover, these enhanced adhesion and migration 
processes facilitate the recruitment of monocytes and 
T-cells into the arterial wall, where they differentiate 
into macrophages and foam cells, respectively. Cell 
accumulation in the arterial wall drives atherosclerotic 
plaque formation and destabilization, thereby increasing 
the risk of heart attack and stroke.33

On the other hand, in obesity, hypertrophied adipocytes 
become dysfunctional and release free fatty acids (FFAs) 
into the bloodstream. FFAs engage toll-like receptors 
(TLRs) on immune cells, thus prompting the secretion of 
further pro-inflammatory cytokines. This TLR-mediated 
cytokine release creates a vicious cycle of inflammation 
that exacerbates both metabolic and cardiovascular 
dysfunction (Figure 1).34

Visceral adiposity enhances lipolysis and increases 
FFA levels, further stimulating inflammation (IL-6 and 
TNF-α) via TLR activation on immune cells. These events 
contribute to endothelial activation, upregulation of 
adhesion molecules (VCAM-1 and ICAM-1), leukocyte 
recruitment, and differentiation into foam cells, ultimately 
leading to plaque formation and atherosclerosis. Similarly, 
IL-6 contributes to insulin resistance by inducing 
the suppressor of cytokine signaling 3, a protein that 
interferes with insulin signaling, and promoting hepatic 
gluconeogenesis, which elevates blood glucose levels.35 
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TNF-α impairs insulin signaling by inhibiting insulin 
receptor substrate 1 (IRS-1) and promotes lipolysis, thereby 
increasing FFAs, which exacerbate insulin resistance.36

Oxidative Stress
OS, a disturbance in the equilibrium between reactive 
oxygen species (ROS) production and antioxidant 
defenses, is a key pathophysiological process in both 
CVDs and metabolic disorders. Excessive ROS production 
damages cellular components, such as lipids, proteins, 
and deoxyribonucleic acid (DNA), contributing to the 
development and progression of both conditions.37 Cells 
counteract OS by triggering a network of antioxidant 
responses, primarily arranged by the transcription factor 
nuclear factor erythroid 2- 2-related factor 2 (Nrf2).38 In 
the absence of stress, Nrf2 remains inactive as it is bound 
by Kelch-like ECH-associated protein 1 (Keap1) in the 
cytoplasm, which promotes its continuous degradation 
via the proteasome pathway.39 However, under OS 

conditions, the post-translational modifications of Keap1 
impair its ability to sequester Nrf2 in the cytoplasm, 
thereby facilitating Nrf2 stabilization and nuclear 
translocation.40 After translocating to the nucleus, Nrf2 
binds to antioxidant response elements in the promoter 
regions of target genes, inducing the transcription of 
antioxidant enzymes like superoxide dismutase, catalase, 
and glutathione peroxidase. Generally, these enzymes 
enhance the cell’s ability to detoxify ROS and limit 
oxidative damage.41 In metabolic disorders and CVDs, 
chronic OS can impair this pathway, leading to increased 
cellular damage and disease progression.37 Therapeutic 
strategies often aim to enhance Nrf2 activity to bolster 
the antioxidant defense system, potentially mitigating the 
adverse effects of OS in these conditions.42 

On the other hand, ROS activate kinases such as c-Jun 
N-terminal kinase (JNK) and IκB kinase (IKK), which 
phosphorylate IRS-1, thereby impairing its function. This 
ROS-induced impairment of IRS-1 reduces glucose uptake 

Table 1. A Summary of Human Study Findings on the Pathophysiological Interplay Between Cardiovascular Diseases and Metabolic Disorders

Pathophysiological 
Mechanism

Human Study Findings Implications/Conclusions References

Chronic inflammation
Elevated CRP, IL-6, and TNF-α in patients with CVD and 
type 2 diabetes (T2D)

Chronic inflammation contributes to atherosclerosis 
and insulin resistance.

13

Insulin resistance
Insulin resistance observed in patients with hypertension 
(HTN), coronary artery disease, and heart failure

Insulin resistance is a central mechanism linking 
metabolic and cardiovascular disorders.

14

Endothelial dysfunction
Reduced flow-mediated dilation and NO bioavailability 
in diabetic and cardiovascular patients

Endothelial dysfunction serves as an early marker for 
atherosclerosis.

15

Gut microbiota dysbiosis
Altered Firmicutes/Bacteroidetes ratio and elevated 
TMAO levels in patients with obesity, T2D, and CVD

Microbiota-derived metabolites like TMAO promote 
inflammation and atherogenesis.

16

Adipokine imbalance
Elevated leptin and reduced adiponectin in patients with 
CVD and metabolic syndrome

The dysregulation of adipokines exacerbates 
inflammation and endothelial dysfunction.

17

Sympathetic nervous system 
overactivity

Sympathetic overactivity observed in patients with 
obesity and HTN

Sympathetic overactivation accelerates both metabolic 
and cardiovascular damage.

18

Chronic hyperglycemia
Elevated blood glucose levels contribute to endothelial 
injury and arterial stiffening.

Chronic hyperglycemia accelerates cardiovascular 
complications in metabolic disorders.

19

Renin-angiotensin-
aldosterone system (RAAS) 
activation

Increased RAAS activity in patients with metabolic 
syndrome and CVD

RAAS overactivity contributes to insulin resistance and 
vascular damage.

20

Visceral fat accumulation
Abdominal fat is linked to the increased risk of heart 
disease and metabolic disturbances.

Visceral adiposity induces inflammation and alters 
lipid metabolism.

21

Endothelial nitric oxide 
synthase (eNOS) dysfunction

Impaired eNOS function in patients with T2D and HTN
eNOS dysfunction accelerates vascular stiffness and 
endothelial injury.

22

Hypercoagulability
Increased fibrinogen and D-dimer levels in patients with 
CVD and metabolic disorders

Hypercoagulability increases thrombotic risk in 
metabolic and cardiovascular conditions.

23

Mitochondrial dysfunction
Reduced mitochondrial function in skeletal muscles and 
vasculature of patients with obesity and CVD

Mitochondrial dysfunction exacerbates metabolic and 
cardiovascular decline.

24

Chronic kidney disease 
(CKD) and CVD

CKD accelerates cardiovascular risk in patients with 
metabolic disorders.

Kidney dysfunction promotes vascular calcification 
and increases CVD risk.

25

Autonomic dysfunction
Reduced heart rate variability and increased sympathetic 
tone in CVD and metabolic disorder patients

Autonomic dysfunction is associated with poor 
prognosis in both conditions.

26

Leptin resistance
Increased leptin levels and resistance in obesity and 
diabetes contribute to vascular dysfunction.

Leptin resistance leads to inflammation, endothelial 
dysfunction, and cardiovascular risk.

27

Inflammatory cytokine 
release from adipose tissue

The overproduction of IL-6, TNF-α, and other pro-
inflammatory cytokines from visceral fat in CVD and 
metabolic patients

Inflammatory cytokines contribute to systemic 
inflammation, insulin resistance, and vascular damage.

28

Endocrine disruptors
Exposure to endocrine-disrupting chemicals correlates 
with increased risk of both CVD and metabolic disorders.

Environmental factors exacerbate metabolic and 
cardiovascular risks through hormonal modulation.

29

Note. CRP: C-reactive protein; IL-6: Interleukin 6; TNF-α: Tumor necrosis factor-alpha; CVD: Cardiovascular disease; NO: Nitric oxide; TMAO: 
Trimethylamine N-oxide.
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in muscle and fat tissue, thereby elevating blood glucose 
and worsening metabolic dysfunction (Figure 2).43

Under physiological conditions, Nrf2 is sequestered 
in the cytoplasm by Keap1 and targeted for proteasomal 

degradation. The OS-induced modifications of Keap1 
diminish its ability to sequester Nrf2, thereby enhancing 
Nrf2 stabilization and nuclear translocation, which, 
in turn, activate the transcription of antioxidant genes 

Figure 1. Pathophysiological Link Between Insulin Resistance, Visceral Adiposity, and Atherosclerosis
Note. SOCS3: Suppressor of cytokine signaling 3; IL-6: Interleukin 6; TNF-α: Tumor necrosis factor-alpha; IRS-1: Insulin receptor substrate 1; TLR: Toll-like receptor; 
FFA: Free fatty acid; VCAM-1: Vascular cell adhesion molecule-1; ICAM-1: Intercellular adhesion molecule-1

Figure 2. Role of Oxidative Stress and Nuclear Factor Erythroid 2-Related Factor 2 Signaling in the Development of Cardiometabolic Disorders
Note. ARE: Antioxidant response element; Nrf2: Nuclear factor erythroid 2-related factor 2; Keap1: Kelch-like ECH-associated protein 1; ROS: Reactive oxygen 
species; CAT: Catalase; SOD: Superoxide dismutase; GPx: Glutathione peroxidase; FFA: Free fatty acid; NADH: Nicotinamide adenine dinucleotide; FADH: Flavin 
adenine dinucleotide; ETC: Electron transport chain; NO: Nitric oxide; JNK: c-Jun N-terminal kinase; IKK: IκB kinase; IRS-1: Insulin receptor substrate 1
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(SOD, GPx, and CAT) to counteract ROS. In chronic 
OS, metabolic disorders (e.g., hyperglycemia and 
hyperlipidemia) enhance mitochondrial ROS production 
and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase activity, respectively. Excessive 
ROS leads to the conversion of nitric oxide (NO) to 
peroxynitrite, impaired vasodilation, increased vascular 
permeability, leukocyte adhesion, and plaque formation, 
ultimately promoting atherosclerosis. Simultaneously, 
ROS activate stress kinases (IKK and JNK), which 
impair insulin signaling and glucose uptake, leading to 
hyperglycemia and creating a vicious cycle.

Insulin Resistance
Insulin resistance, a hallmark of T2D and metabolic 
syndrome, is a key link between metabolic disorders and 
CVDs. It occurs when cells in tissues like muscle, liver, and 
fat become less responsive to insulin, impairing glucose 
uptake and metabolism. The insulin signaling pathway is 
central to this process.44 Under normal conditions, insulin 
binds to its receptor (INSR), activating receptor tyrosine 
kinases that phosphorylate IRSs. This IRS phosphorylation 
activates the phosphoinositide 3-kinase/protein kinase 
B (PI3K/Akt) signaling pathway, which is crucial for 
mediating the translocation of glucose transporter type 
4 (GLUT4) to the cell membrane. As a result, glucose 
uptake by cells is significantly increased, supporting 

effective glucose utilization. Moreover, it inhibits hepatic 
gluconeogenesis and supports cell growth and survival.45 
This pathway is disrupted in insulin resistance.46 Chronic 
inflammation, OS, and lipid accumulation (diacylglycerol 
and ceramides) activate stress kinases, such as JNK and IκB 
kinase beta.47 These kinases phosphorylate IRS proteins on 
inhibitory sites, thereby reducing PI3K/Akt activation. As 
a result, GLUT4 translocation is impaired, glucose uptake 
decreases, and hepatic glucose production increases, 
leading to hyperglycemia.48 In addition, hyperglycemia 
promotes the formation of advanced glycation end 
products, which cross-link with collagen and other 
proteins in the vascular wall, leading to increased stiffness 
and reduced compliance.49 Furthermore, impaired insulin 
signaling alters lipid homeostasis by elevating triglyceride 
and low-density lipoprotein (LDL) cholesterol levels 
while concurrently decreasing high-density lipoprotein 
cholesterol, thereby fostering a lipid profile strongly 
associated with atherosclerotic risk.50

On the other hand, insulin resistance impairs endothelial 
function by reducing NO production while increasing 
endothelin-1 (ET-1) expression, a potent vasoconstrictor. 
This insulin-resistance-induced imbalance in NO and 
ET-1 leads to impaired vasodilation, increased vascular 
resistance, and HTN, further exacerbating cardiovascular 
risk (Figure 3).51 It is noteworthy that therapeutic 
approaches often focus on improving insulin sensitivity 

Figure 3. Schematic Representation of Normal Insulin Signaling Versus Insulin Resistance and Its Vascular Consequences
IRS: Insulin receptor substrate; GLUT4: Glucose transporter type 4; PI3K/Akt: Phosphoinositide 3-kinase/protein kinase B; NO: Nitric oxide; ET-1: Endothelin-1; 
IKKβ: IκB kinase beta; JNK: c-Jun N-terminal kinase
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through lifestyle changes, medications (e.g., metformin), 
or targeting inflammatory pathways in order to restore 
proper insulin signaling.52

Under normal conditions, insulin binding to its 
receptor activates the IRS-PI3K/Akt pathway, leading 
to GLUT4 translocation and increased glucose uptake. 
Moreover, in insulin resistance, pro-inflammatory 
cytokines, OS, and lipid accumulation activate the IκB 
kinase beta and JNK pathways, inhibiting IRS function 
and downstream signaling, leading to reduced glucose 
uptake and hyperglycemia. Additionally, insulin resistance 
impairs endothelial function by decreasing NO while 
increasing ET-1, thereby promoting vasoconstriction and 
contributing to HTN.

Endothelial Dysfunction
The endothelium, a monolayer of cells that lines blood 
vessels, is essential for maintaining vascular homeostasis.53 
Endothelial dysfunction, marked by decreased NO 
bioavailability, heightened OS, and increased inflammation, 
is a pivotal early event in the pathogenesis of both CVDs 
and metabolic disorders. Furthermore, it augments the 
macrophage uptake of oxidized LDL, fostering foam cell 
formation and hastening plaque progression.54 Under 
physiological conditions, endothelial NO synthase (eNOS) 
generates NO, which facilitates vasodilation, suppresses 
inflammation, and inhibits platelet aggregation.55 Risk 
factors like hyperglycemia, OS, and inflammation reduce 
NO bioavailability in CVDs and metabolic diseases. This 
reduction in NO occurs due to eNOS uncoupling, in 
which eNOS produces superoxide rather than NO, as well 
as increased ROS-mediated scavenging of NO.55 Excess 
ROS, generated by nicotinamide adenine dinucleotide 
phosphate oxidases and mitochondrial dysfunction, 
directly damages endothelial cells and reduces NO levels. 
ROS trigger pro-inflammatory signaling pathways, 
notably activating nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB). This activation 
enhances the expression of adhesion molecules, 
such as ICAM-1 and VCAM-1.56 Moreover, chronic 
inflammation, driven by cytokines such as TNF-α and IL-
6, disrupts endothelial function by activating NF-κB and 
other signaling pathways. In addition, this inflammation-
induced activation leads to increased expression of 
adhesion molecules, chemokines, and endothelin-1, 
further impairing vascular homeostasis.57 Additionally, 
endothelial dysfunction contributes to insulin resistance 
by impairing insulin delivery to skeletal muscle and 
adipose tissue.58 Insulin resistance in endothelial cells 
reduces PI3K/Akt signaling, thereby diminishing eNOS 
activation and NO production.59 

Gut Microbiota
Emerging evidence highlights the role of gut microbiota 
in the pathogenesis of both CVDs and metabolic 
disorders.60,61 The gut microbiota, which encompasses a 
wide variety of microorganisms within the gastrointestinal 

tract, is essential for regulating host metabolic processes, 
controlling inflammation, and influencing immune 
responses.62 Disruptions in its composition can initiate 
innate immune responses through key pathways involving 
TLRs and the nucleotide-binding oligomerization 
domain-like receptor family pyrin domain-containing 3 
inflammasome. This immunological activation leads to 
the increased secretion of pro-inflammatory cytokines, 
including TNF-α and IL-6, which play a critical role 
in the onset and progression of metabolic diseases and 
CVDs.63,64 Further, the gut microbiota influences bile acid 
profiles, which, in turn, regulate lipid metabolism and 
glucose homeostasis by activating receptors such as the 
farnesoid X receptor and the Takeda G protein-coupled 
receptor 5.65,66 Based on previous studies, dysbiosis alters 
bile acid composition, impairing these signaling pathways 
and contributing to metabolic disorders.8,67 It is also linked 
to enhanced intestinal permeability, allowing bacterial 
endotoxins (e.g., lipopolysaccharide) to translocate into 
the bloodstream.68 Furthermore, gut microbiota generate 
various metabolites, including short-chain fatty acids 
(SCFAs) such as acetate, propionate, and butyrate, as well 
as trimethylamine N-oxide (TMAO) and bile acids.69 
SCFAs are acknowledged for their anti-inflammatory 
properties and advantageous effects on metabolic health.70 
In contrast, TMAO, produced from dietary nutrients 
(e.g., choline and carnitine), is associated with increased 
atherosclerotic and cardiovascular risk.71 Dysbiosis alters 
the balance of these metabolites, thereby promoting 
inflammation and metabolic dysfunction.72

Clinical Implications and Therapeutic Approaches
The shared pathophysiological mechanisms between 
CVDs and metabolic disorders (diabetes, obesity, and 
metabolic syndrome) provide a foundation for developing 
integrated therapeutic strategies.73 This section will explore 
the clinical implications of these shared mechanisms and 
discuss current and emerging therapeutic approaches, 
including lifestyle interventions, pharmacological 
therapies, personalized medicine, and future directions.

Lifestyle Interventions
Lifestyle modifications are the cornerstone of managing 
both CVDs and metabolic disorders. More precisely, 
these interventions not only address risk factors such as 
obesity, HTN, and dyslipidemia but also target underlying 
mechanisms, such as inflammation, OS, and insulin 
resistance.74 The Mediterranean diet, characterized by 
a high intake of fruits, vegetables, whole grains, nuts, 
and olive oil, is renowned for its health benefits and 
has been shown to reduce inflammation, improve lipid 
profiles, and enhance insulin sensitivity.75 According 
to some studies, diets emphasizing plant-based foods 
and minimizing animal products are associated with 
lower inflammation, improved endothelial function, and 
reduced cardiovascular risk.8,76 Moreover, research has 
reported that in addition to a healthy diet, regular exercise 
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improves insulin sensitivity, reduces blood pressure, 
and enhances cardiovascular fitness.77 Various forms of 
physical activity (e.g., aerobic exercise, resistance training, 
and high-intensity interval training) have demonstrated 
significant therapeutic benefits for individuals with CVDs 
and metabolic disorders. Likewise, exercise reduces 
visceral fat, a vital source of pro-inflammatory cytokines, 
thereby lowering systemic inflammation.78,79 The findings 
of one study revealed that losing even a small amount of 
weight (about 5–10% of one’s body weight) can lead to 
substantial improvements in metabolic health and reduce 
the risk of CVDs.80 

Pharmacological Therapies
Pharmacological treatments targeting shared mechanisms 
between CVDs and metabolic disorders have shown 
promise in improving outcomes for patients with these 
conditions. These therapies include both established 
drugs and novel agents under investigation.81 

Metformin, a standard first-line treatment for T2D, 
primarily acts by inhibiting hepatic gluconeogenesis, 
thereby reducing glucose production in the liver. Similarly, 
it improves insulin sensitivity in peripheral tissues, 
leading to better glucose uptake by muscle and adipose 
cells. Moreover, it activates adenosine monophosphate-
activated protein kinase, a critical enzyme that regulates 
cellular energy balance, thereby further suppressing 
glucose production and promoting fatty acid oxidation.82 
In metabolic diseases, metformin helps lower blood 
glucose levels, improves lipid profiles, and may aid in 
weight management.83 In CVDs, its benefits are attributed 
to improved metabolic control, reduced inflammation, 
and potential protective effects on endothelial function, 
which generally lower the risk of cardiovascular events. 
These mechanisms make metformin a cornerstone in the 
management of metabolic and cardiovascular conditions.84

Likewise, sodium-glucose cotransporter 2 (SGLT2) 
inhibitors, such as empagliflozin and dapagliflozin, 
function by inhibiting SGLT2 in the proximal tubules of 
the kidney, thereby reducing glucose reabsorption and 
increasing its excretion in the urine (glucosuria). This 
mechanism lowers blood glucose levels independently 
of insulin.85 In metabolic diseases, SGLT2 inhibitors 
also improve glycemic control, reduce body weight, and 
lower blood pressure.86 In CVDs, they provide significant 
benefits by reducing heart failure hospitalizations and 
alleviating cardiovascular outcomes.87 These effects are 
attributed to their ability to promote natriuresis (sodium 
excretion), reduce fluid overload, improve cardiac energy 
metabolism, and potentially reduce inflammation and OS. 
These dual benefits make SGLT2 inhibitors valuable in 
managing both metabolic and cardiovascular conditions.88

Moreover, glucagon-like peptide-1 (GLP-1) receptor 
agonists, such as liraglutide and semaglutide, mimic the 
actions of the natural incretin hormone GLP-1. They help 
lower blood sugar by boosting glucose-dependent insulin 
secretion, suppressing glucagon release, and slowing 

gastric emptying, all of which contribute to lowering blood 
glucose levels.89 In metabolic conditions, GLP-1 receptor 
agonists help regulate blood glucose levels, facilitate 
weight reduction, and decrease appetite.90 In the context 
of CVDs, these receptor agonists have demonstrated the 
ability to lower the risk of major adverse cardiovascular 
events, including heart attacks and strokes. Additionally, 
they achieve this goal by enhancing endothelial function, 
reducing systemic inflammation, supporting weight 
loss, and controlling blood pressure. These multifaceted 
benefits make GLP-1 receptor agonists effective in 
managing both metabolic and cardiovascular conditions.91

Statins lower cholesterol by blocking 3-hydroxy-3-
methylglutaryl-coenzyme A reductase, which is an 
essential liver enzyme in cholesterol production. This 
inhibition reduces LDL cholesterol (LDL-C) production 
but increases LDL particle clearance from the bloodstream. 
They also have anti-inflammatory effects, as evidenced 
by reductions in CRP levels. In addition, statins improve 
lipid profiles by lowering LDL-C, triglycerides, and 
total cholesterol while modestly increasing high-density 
lipoprotein cholesterol.92 In CVDs, they considerably 
reduce the risk of atherosclerotic cardiovascular events 
(e.g., heart attack and stroke) by stabilizing atherosclerotic 
plaques, reducing inflammation, and improving 
endothelial function. These effects make statins the 
basis for preventing and managing cardiovascular and 
metabolic disorders.93

Drugs targeting specific inflammatory pathways, such 
as IL-1β inhibitors (canakinumab) and TNF-α inhibitors, 
are being investigated for their potential to reduce 
cardiovascular risk in patients with metabolic disorders.94, 

95 Anti-inflammatory agents target and reduce chronic 
inflammation, a key driver in both metabolic disorders 
and CVDs. They function by inhibiting pro-inflammatory 
pathways (e.g., cytokines like IL-1β, IL-6, and TNF-α) 
or modulating immune responses. Furthermore, these 
agents improve insulin sensitivity, reduce hyperglycemia, 
and mitigate complications such as insulin resistance and 
fatty liver disease.94,95 In CVDs, they also lower the risk 
of atherosclerosis and myocardial infarction by reducing 
vascular inflammation, stabilizing plaques, and improving 
endothelial function. By addressing the underlying 
inflammatory processes, anti-inflammatory agents also 
provide therapeutic benefits in the management of these 
interconnected conditions.94,96

Novel antioxidants, such as mitochondria-targeted 
agents (e.g., MitoQ), aim to reduce OS while improving 
endothelial function. These agents hold promise 
for treating both CVDs and metabolic disorders.97 
Antioxidants act by neutralizing ROS and reducing 
OS, a key contributor to cellular damage in metabolic 
disorders and CVDs. More precisely, they enhance the 
body’s natural defense mechanisms by scavenging free 
radicals and protecting cells from oxidative damage. 
Moreover, antioxidants improve insulin sensitivity, reduce 
inflammation, and protect pancreatic beta cells, helping 
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to manage diabetes and its complications.98 In CVDs, 
they also prevent oxidative damage to lipids, proteins, 
and DNA, reducing the progression of atherosclerosis, 
improving endothelial function, and lowering the risk of 
heart failure and myocardial infarction. By mitigating OS, 
antioxidants play a protective role in these conditions.98

Probiotics, prebiotics, and fecal transplants aim to 
restore gut microbiota balance and reduce inflammation. 
It should be noted that gut microbiota modulators 
influence the microbiome by promoting beneficial 
bacteria and suppressing harmful ones, thereby improving 
gut health and systemic outcomes.99 This modulation 
influences metabolic and cardiovascular health through 
several mechanisms, including improved gut barrier 
function, reduced systemic inflammation, and enhanced 
production of metabolites (e.g., SCFAs). Moreover, 
these modulators improve insulin sensitivity, glucose 
metabolism, and lipid profiles while reducing obesity-
related inflammation.64 In CVDs, they help lower blood 
pressure, reduce atherosclerosis, and improve lipid 
metabolism by decreasing systemic inflammation and 
OS. By targeting the gut microbiome, these agents offer a 
novel approach to managing metabolic and cardiovascular 
conditions.64

Personalized Medicine
Personalized medicine in metabolic disorders and CVDs 
tailors treatment based on individual genetic, molecular, 
and clinical profiles. It uses biomarkers, genetic testing, 
and advanced diagnostics to predict disease risk, select 
optimal therapies, and monitor responses. Furthermore, 
it helps customize diabetes management by targeting 
specific pathways (e.g., insulin resistance and beta-
cell dysfunction) and selecting drugs such as GLP-1 
agonists or SGLT2 inhibitors based on patient profiles. 
Additionally, it guides the use of statins, antiplatelet 
therapies, or anti-inflammatory agents based on genetic 
predispositions (proprotein convertase subtilisin/kexin 
type 9 mutations) or biomarker levels (high-sensitivity 
CRP and LDL-C).100,101 Biomarkers such as high-
sensitivity CRP, TMAO, and micro ribonucleic acids can 
help identify patients at high risk for CVDs and metabolic 
complications. These biomarkers serve a dual purpose; 
they help inform clinical treatment decisions and are 
essential for evaluating how well a patient is responding to 
therapy.102,103 Recent advancements in omics technologies 
(e.g., genomics, proteomics, and metabolomics) are 
accelerating the discovery of new biomarkers and potential 
therapeutic targets.104

On the other hand, genetic variants associated with 
insulin resistance, inflammation, and lipid metabolism 
can influence an individual’s response to therapy.105 
Further, epigenetic changes (e.g., DNA methylation and 
histone modifications) affect gene expression involved 
in cardiovascular and metabolic diseases.106 Targeting 
these modifications with epigenetic therapies is an area of 
active research. Based on research, personalized dietary 

recommendations informed by genetic and metabolic 
profiles can also optimize outcomes for patients with 
CVDs and metabolic disorders.107 By focusing on 
individual variability, personalized medicine improves 
treatment efficacy, reduces side effects, and enhances 
outcomes in metabolic and cardiovascular care.108

Future Directions
The future of managing CVDs and metabolic disorders 
will leverage multi-target therapies and advanced 
technologies.12 Combining SGLT2 inhibitors and GLP-
1 receptor agonists provides dual glycemic control and 
cardiovascular protection.109 In addition, nutraceuticals 
such as curcumin and resveratrol may improve outcomes 
through their anti-inflammatory and antioxidant 
properties.110,111 Furthermore, artificial intelligence 
enhances risk prediction and treatment personalization 
through complex data analysis,112 while mesenchymal 
stem cells hold potential for tissue repair.113 Generally, 
a comprehensive public health strategy is crucial for 
addressing the global burden of these diseases.

Limitations of the Study
Despite the comprehensive exploration of shared 
pathophysiological mechanisms between CVDs and 
metabolic disorders, this review had several limitations. 
First, the scope was restricted to studies published in 
English, potentially excluding relevant data from non-
English literature. Moreover, while efforts were made to 
include the most recent and high-quality evidence, the 
rapidly evolving nature of research in cardiovascular and 
metabolic fields indicates that some emerging findings 
may not be captured. Furthermore, heterogeneity 
among experimental models, clinical populations, and 
methodologies in the included studies may have limited 
the ability to draw definitive causal conclusions. Finally, 
although this review highlights potential therapeutic 
approaches, translating these strategies from preclinical 
studies to clinical practice remains a challenge. 
Accordingly, the long-term efficacy and safety of these 
strategies require further validation.

Conclusion
Cardiometabolic disorders stem from complex 
interactions among inflammatory, oxidative, metabolic, 
and endothelial pathways. Therefore, addressing these 
combined effects, rather than isolated risk factors, 
is crucial. Advances in therapeutics and biomarkers 
offer opportunities to identify risk precisely and target 
interventions. Nonetheless, further research is needed to 
translate mechanistic insights into scalable clinical and 
public health solutions. Eventually, linking molecular 
discoveries, patient data, and population-based prevention 
will improve strategies to combat the global burden of 
these diseases.
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